
Zero-Cost, Arrow-Enabled Data Interface for
Apache Spark

Sebastiaan Alvarez Rodriguez∗, Jayjeet Chackrabroty‡,
Aaron Chu‡, Ivo Jimenez‡, Jeff LeFevre‡, Carlos Maltzahn‡ and Alexandru Uta∗

∗LIACS, Leiden University
Email: sebastiaanalva@gmail.com, a.uta@liacs.leidenuniv.nl

‡UC Santa Cruz
Email: {jchakra1,xweichu,ivotron,jlefevre,carlosm}@ucsc.edu

Abstract—Distributed data processing ecosystems are
widespread and their components are highly specialized, such
that efficient interoperability is urgent. Recently, Apache
Arrow was chosen by the community to serve as a format
mediator, providing efficient in-memory data representation.
Arrow enables efficient data movement between data processing
and storage engines, significantly improving interoperability
and overall performance. In this work, we design a new
zero-cost data interoperability layer between Apache Spark and
Arrow-based data sources through the Arrow Dataset API. Our
novel data interface helps separate the computation (Spark) and
data (Arrow) layers. This enables practitioners to seamlessly
use Spark to access data from all Arrow Dataset API-enabled
data sources and frameworks. To benefit our community, we
open-source our work and show that consuming data through
Apache Arrow is zero-cost: our novel data interface is either
on-par or more performant than native Spark.

I. INTRODUCTION

Distributed data processing frameworks, like Apache
Spark [1], Hadoop [2], and Snowflake [3] have become perva-
sive, being used in most domains of science and technology.
The distributed data processing ecosystems are extensive and
touch many application domains such as stream and event
processing [4], [5], [6], [7], distributed machine learning [8], or
graph processing [9]. With data volumes increasing constantly,
these applications are in urgent need of efficient interoperation
through a common data layer format. In the absence of a
common data interface, we identify two major problems: (1)
data processing systems need to convert data, which is a very
expensive operation; (2) data processing systems require new
adapters or readers for each new data type to support and for
each new system to integrate with.

A common example where these two issues occur is the de-
facto standard data processing engine, Apache Spark. In Spark,
the common data representation passed between operators
is row-based [10]. Connecting Spark to other systems such
as MongoDB [11], Azure SQL [12], Snowflake [3], or data
sources such as Parquet [13] or ORC [14], entails building
connectors and converting data. Although Spark was initially
designed as a computation engine, this data adapter ecosystem
was necessary to enable new types of workloads. However,
we believe that using a universal interoperability layer instead
enables better and more efficient data processing, and more
data-format related optimizations.

The Arrow data format is available for many languages and
is already adopted by many projects, including pySpark [1],
Dask [15], Matlab [16], pandas [17], Tensorflow [18]. More-
over, it is already used to exchange data between computation
devices, such as CPUs and GPUs [19]. However, the Apache
Arrow Dataset API [20], not to be confused with the main
Arrow [21] library, emerged as a platform-independent data
consumption API, which enables data processing frameworks
to exchange columnar data efficiently, and without unnecessary
conversions. The Arrow Dataset API supports reading many
kinds of datasources, both file formats and (remote) cloud
storage. Exploring the benefits of the Arrow Dataset API on
building storage connectors is currently an understudied topic.

In this paper, we therefore leverage the power of the Apache
Arrow Dataset API and separate the computation offered
by Spark from the data (ingestion) layers, which are more
efficiently handled by Arrow. We design a novel connector
between Spark and The Apache Arrow Dataset API, to which
Spark can offload its I/O. Using the Arrow Dataset API,
we enable Spark access to Arrow-enabled data formats and
sources. The increasing adoption of Arrow will make many
more data types and sources available in the future, without
adding any additional integration effort for our connector and,
by extension, for Spark.

In this work, we lay the foundation of integrating Spark with
all Arrow-enabled datasources and show that the performance
achieved by our connector is promising, exceeding in many
situations the performance achieved by Spark-implemented
data connectors. We experiment with several design points,
such as batch sizes, compression, data types (e.g., Parquet
or CSV), and the scaling behavior of our connector. Our
analysis shows that our proposed solution scales well, both
with increasing data sizes and Spark cluster sizes, and we
provide advice for practitioners on how to tune Arrow batch
sizes and which compression algorithms to choose. Finally,
practitioners can integrate our connector in existing programs
without modification, since it is implemented as a drop-in,
zero-cost replacement for Spark reading mechanisms. The
contribution of this work is the following:
1) The design and implementation of a novel, zero-cost

data interoperability layer between Apache Spark and the
Apache Arrow Dataset API. Our connector separates the

Arrow JNI
bridge

Build
ds

Java Native
Interface (JNI)

JVM C++

Arrow
data

source

Spark

Native
Dataset

Read
request

Read
response

JNI
wrapper

JNI
wrapper

Native
Dataset

Arrow
FileFormat

Create
ds

Native
Scanner

Native
Scanner

Forward
tasks

File
Base

File
parquet

File
ORC

File
format

parquet

Uses

CSV ORC

File
CSV

Data R/W

Data R/W

Arrow IPC
Messages

Scantask
ref

Vector Loader
Iterator

Vector
Loader

Generates

Scantask
ref

...Column
Vectors

Columnar
Batch

Generates

Execute

1 2 3

4
56

Data source Arrow C++
Spark objects

Data copy
Contribution Extension

Fig. 1: Arrow-Spark design overview, integrating Arrow (right)
and Spark (left) using the Java Native Interface (JNI).

computation (Spark) from the data (ingestion) layer (Ar-
row) and enables Spark interoperability with all Arrow-
enabled formats and data sources. We open-source [22]
our implementation for the benefit of our community.

2) The performance evaluation of the data interoperability
layer. We show that Arrow-enabled Spark performs on-par
or better than native-Spark and provide advice on how to
tune Arrow parameters.

II. DESIGN AND IMPLEMENTATION

Our framework, called Arrow-Spark, provides an efficient
interface between Apache Spark and all Arrow-enabled data
sources and formats. Spark is in charge of execution, and Ar-
row provides the data, using its in-memory columnar formats.
In Figure 1, we give a more detailed overview of how we
access data through Arrow. Spark is a JVM-based distributed
data processing system, whereas the Arrow Dataset API [20] is
only implemented in C++ and Python, but not Java. To enable
communication, we created a bridge implementation.

1 Reads. Data transmission is initiated by a read request
coming from Spark. Read requests arrive at the Arrow File-
Format datasource.

2 JVM Dataset. The Arrow FileFormat constructs a
Dataset interface to read data through JNI, using the Arrow
Dataset C++ API. The JVM Dataset interface forwards all
calls through the JNI wrapper to C++. The Arrow Dataset
API interface is constructed on the C++-side, and a reference
UUID is passed to the JVM interface counterpart. Through this
JVM interface, the Arrow FileFormat initiates data scanning
(reading) using a scanner.

3 Arrow C++ Dataset API. On the C++ side, a native
Dataset instance is created. On creation, it picks a FileFormat,
depending on the type of data to be read.

4 Data transmission. The C++ Arrow Dataset API read-
s/writes the data in batches, using given FileFormat.

5 Arrow IPC. Each data batch is placed in memory as
an Arrow IPC message, which is a columnar data format. The
address to access each message is forwarded to the JVM, and
stored in a Scantask reference. Notice that here we make only
one additional data copy.

def ge tAges : Un i t {
v a l con f : ArrowRDDReadConfig =

ArrowRDDReadConfig . b u i l d e r ()
. w i t h P a r t i t i o n e r (. . .)
. w i t h N u m P a r t i t i o n s (1 0 0)
. wi thDataSourceURI (p a t h)
. b u i l d ()

v a l c o n t e x t = s e s s i o n . s p a r k C o n t e x t
v a l peopleRDD : ArrowRDD = ArrowSpark . l o a d (c o n t e x t , con f)
peopleRDD . f i l t e r (row => row . g e t S h o r t (1) > 42)
/ / . . .

}

Fig. 2: Example usage of our connector for Spark RDDs.

6 Conversion. Each Arrow IPC message is converted to
an array of Spark-readable column vectors. Because Spark
operators exchange row-wise data, we convert the column
vectors to a row-wise representation by wrapping the vectors
in a ColumnarBatch, which wraps columns and allows row-
wise data access on them. This batch is returned to Spark and
incurs data copying which cannot be avoided due to Spark
operators only working on row-based data.

When reading data in Arrow, one uses a Dataset object.
Datasets contain required information about datasources, such
as the location of the data. On the JVM side (e.g., in Spark),
a Dataset object holds a references to a C++ Arrow Dataset.
To obtain data, we scan the dataset using a Scanner. We
execute the scanner, which provides us with a list of scan
tasks. Each task loads the next batch of results into memory,
in a columnar representation, as an Arrow Inter-Process Com-
munication (IPC) message. To acquire the data as arrays of
Spark-readable column vectors, we use a VectorSchemaRoot.
Once all necessary Arrow Vectors (columns) are extracted, we
wrap the vectors in a ColumnarBatch. As we tried to display
in Figure 1, a ColumnarBatch provides an interface to read a
group of columns in a row-by-row fashion. This is required,
because Spark can only process row-wise data. Now Spark is
able to iterate over rows of data, and this concludes the data
provisioning through Arrow.

All interaction with Arrow is performed lazily, meaning they
will only be executed on demand from Spark. This ensures
we do not have to load in all data at once. This is good for
performance, because external datasources may be larger than
the memory available on Spark clusters.

A. Usage, available APIs and extensions

When designing our connector, we specifically searched for
options to easily control Arrow from Scala, whether users need
RDDs or the more modern Dataframes or Spark Datasets.
We show a simple example for loading RDDs, and another
example for Dataframes. In Figure 2, we show how we can
obtain a RDD. We implemented a custom configuration object
due to the many options that can be adjusted. Users can
configure simple options, like how many partitions are to be
generated, but also extend the connector by providing a custom
partitioner to be used when splitting the data, or even a custom
object to load Arrow datasets. After an ArrowRDD is loaded,
we can use it like any other RDD. Providing the file format

def ge tAges : Un i t {
v a l df : DataFrame = s e s s i o n . r e a d . a r row (p a t h)
d f . c rea teOrReplaceTempView (” P eo p l e ”)
s e s s i o n . s q l (”SELECT name FROM Pe op le WHERE age > 42 ”)
/ / . . .

}

Fig. 3: Example usage of our connector for Spark DataFrames,
Spark Datasets

is optional. If not specified, the connector will automatically
determine what kind of data is requested. The example shows
a filter operation on an RDD of individuals older than 42 years.

To show how interacting with our modern connector works,
we provide an example in Figure 3. This example should be
familiar to Spark users, as the common API is not changed.
In “session.read”, we obtain a DataFrameReader. The part
right after, “.arrow(path)” calls an implicitly defined function,
which loads the “ArrowFileFormat” object. This is all that
is needed from a user-perspective to use this connector. The
supplied path can point to either parquet- or CSV files. The
ArrowFileFormat will automatically determine what kind of
data is requested.

B. Arrow-Spark JNI Bridge

Apache Spark (core) is implemented in Scala, and there
does not exist an Arrow Dataset implementation written in
any JVM language. The Arrow Dataset API [20] is not to
be confused with main Arrow library, for which a Java stub
implementation exists [23].

Practitioners using Spark with Arrow are currently bound to
a very small set of features. To use the pyarrow-dataset (Python
wrappers around the C++ Arrow dataset API) implementation
with PySpark (Python wrapper over Spark), one needs to
implement these explicitly through the PySpark program,
unlike our approach which is transparent to the programmer.
Then, the Python bridge between Spark (JVM) and Arrow
(C++) adds a highly inefficient link in applications, and a
large functionality limitation. PySpark requires to convert the
pyarrow dataset tables to pandas data, a PySpark-readable
format. This conversion cancels Spark’s lazy reading, and
requires materializing the entire dataset into memory. We
experimented with a PySpark+pyarrow setup, and found it was
consistently 30 to 50 times slower than our connector, with
a growing performance difference when increasing dataset
sizes. Additionally, due to eager materialization dataset size
is limited by RAM capacity.

Our work in this paper has a much wider scope, aiming
to make core Spark read data using core Arrow, providing
universal data access to core Arrow from Core Spark and all
its wrapper implementations at once.

Implementing our connector in core Spark (JVM) cir-
cumvents all aforementioned inefficiencies and shortcomings.
We can therefore use our connector with all programming
languages that Spark supports.

The core Arrow Dataset implementation is in native C++.
To access it, we use a Java Native Interface (JNI) im-

TABLE I: Description of the experiments in this work.

Experiment Dataset
Size (GB)

Batch
Size (KB) Query Row Size

(Bytes)

E1 1,144 32-32,768 Scan: select * 4× 8
E2 71-4,500 256 Scan: select * 4× 8
E3 71-1,144 256 Scan: select * 4× 8
E4 71-1,144 256 Scan: select * 4× 8

E5 715 25,600 Projection:
select c1,c2,... 100× 8

plementation [24], based on the Intel Optimized Analytics
Platform project [25]. Even though we could have chosen
other languages for which there exists an Arrow Dataset
implementation, we decided to use C++, because of its native-
execution performance. Moreover, the Arrow Dataset API
core is programmed in C++. Using any other language with
Arrow bindings would add additional overhead. Even though
the bridge between the JVM and native code brings a slight
time penalty, we were able to minimize it by limiting data
copies (see Figure 1 for the data copies that our interface
implements). Additionally, C and C++ are the best-supported
languages for interfacing with the JVM, through JNI.

III. ARROW-SPARK PERFORMANCE

We evaluate the performance of Arrow-Spark by comparing
its performance with a standard Spark reading parquet and
CSV data formats. We performed 5 separate experiments (E1-
E5) to reveal various performance aspects of Arrow-Spark,
as described in Table I. Each experiment draws appropriate
conclusions and provides advice for practitioners.

A. Experiment Reproducibility

We used the specifications and parameters we give here as
default values for every experiment, unless stated otherwise.
Experiment. We ran every experiment 31 times for every
configuration. We discard the first execution for every exper-
iment, because the JVM- and memory caches are still ‘cold’
during this run, producing an outlier. Between runs of the
same experiment we did not close the Spark session as to
keep JVM and caches warm. We adhered to the guidelines
provided by Uta et al. [26], to ensure our performance results
are reproducible and significant. Due to the stability of our
cluster, the difference between the 1st and 99th percentiles for
each experiment were below 10% (with one exception which
we comment upon in Section III-B).
Hardware and Deployment. We ran all experiments on
a cluster of 9 machines (8 Spark executor nodes and one
driver), each equipped with 64 GB RAM, and a dual 8-
core Intel E5-2630v3 CPU running at 2.4 GHz. Servers are
interconnected with FDR InfiniBand connection (≈ 56Gb/s).
In the experiments, we always provide the number of nodes
in terms of executor nodes. Spark is allowed to use up to
43GB of the available 64GB RAM in each node. Note that
approximately 17GB of RAM is already in use by input data
as explained below. When reading parquet, we normally read
uncompressed files unless stated otherwise.
Dataset. By default, we process 38.4×109 rows (≈ 1, 144GB)
of synthetic data. The data we experiment with has rows of 4

25 26 27 28 29 210 211 212 213 214 215

Batch size [KB]
0

200

400

Ex
ec

ut
io

n
Ti

m
e

[s
]

Arrow-Spark

0.0

0.5

1.0

1.5

2.0

Re
la

tiv
e

sp
ee

du
p

of
 A

rro
w-

Sp
ar

kArrow-Spark Spark

Fig. 4: Batch size matters: Execution time (boxplots, left y-
axis) and relative speedup (curve, right y-axis) with varying
batch sizes.

up to 100 columns which are 64-bit integers, split into files of
17GB. During initial testing, we found that our experiments
were influenced by local disk speed. With local disk reading,
the bottleneck lies in disk speed, and we cannot uncover any
framework inefficiencies. To mitigate this issue, we decided
to deploy data as close as possible to the CPUs. We chose
to deploy on RAMDisk, a memory-backed filesystem. Our
machines have only 64 GB RAM, while we want to experiment
with datasets of much larger sizes. To solve this new problem,
we created X hardlinks for every file in a dataset of, e.g.
17GB. Spark reads the hardlinks as if they were regular files,
simulating a dataset size of 17 · (X + 1)GB. This way, we
were able to experiment with virtually infinitely large datasets,
regardless of the RAM size constraints.
Performance Measurement. We are interested in I/O perfor-
mance. To measure it we created queries (see Table I) which
only read in all data, and count the number of rows as a way
of triggering execution. This way, we can accurately measure
the read performance. By default, we read this data into a
Spark Dataframe (DF) to test with, reading 256KB per batch.
We replicated all experiments using Spark SQL, Datasets and
directly RDDs, and the conclusions we drew were similar to
what we present in this paper.

B. E1: Batch Size Tuning

To request Arrow to read data, we place (columnar) parquet
data in memory buffers of limited sizes, i.e., batch sizes. We
measured the execution time under varying amounts of batch
sizes. The results are plotted in Figure 4. The performance of
default Spark remains largely unchanged when changing the
amount of rows a buffer may hold for the smaller batch sizes.
Only when setting this number to a very large amount, Spark
seems to suffer a more significant overhead. After investigating
this further, we found that the overhead is because Spark uses
up all available memory with larger batch sizes, causing many
garbage collection calls and memory swapping. Arrow is much
more memory efficient, due to its use of streaming principles
to transmit data.

For Arrow-Spark, choosing a batch size is much more im-
portant for performance. Low batch sizes degrade performance
significantly (see first two boxplots for 25 and 26 batch sizes).
The root cause for this behaviour is the way Arrow-Spark
works. For every batch, the Arrow Dataset API has to read data
and transform it to IPC format. Further, the JVM-side reads

71.5 143.1 286.1 572.2 1144.4 2288.8 4577.6
Dataset size [GB]

0
50

100
150

Ex
ec

ut
io

n
Ti

m
e

[s
]

0.0

0.5

1.0

Re
la

tiv
e

sp
ee

du
p

of
 A

rro
w-

Sp
ar

kArrow-Spark Spark

Fig. 5: Arrow-Spark performance is good: Execution time
(bars) and relative speedup (curve) on increasing parquet data
sets.

this data and converts it to a Spark-understandable format.
With smaller batches, there are more conversions and memory
copies on both sides. Batches of 8192 rows offer the best
performance with both systems, due to hardware features.
Each row in our sample data consists of four 64-bit integers.
With 8192 rows, we get batches of exactly 256KB. Our CPUs
have a 256KB L2 cache per core. (With different CPUs,
the best batch size could be different.) By choosing a batch
size of 8192 rows, we can exactly fit one batch inside the
L2-cache. We verified the correctness of this hypothesis by
experimenting with other data shapes.
Conclusion-1: Practitioners should always overestimate rather
than underestimate batch sizes for Arrow-Spark. Underestima-
tions cause strong performance degradation.

C. E2: Data Scalability

An important property of a distributed data processing
system is its data scalability behavior, which evaluates system
performance with increasing dataset sizes. We measured data
scalability by reading parquet datasets with a wide range of
different sizes. The results of this experiment are depicted in
Figure 5. This figure plots the execution time with increasing
dataset sizes (left vertical axis), as well as the relative speedup
(or slowdown) between the two systems (right vertical axis).
The execution time approximately doubles as the dataset size
doubles. Both Spark and Arrow-Spark scale well.

Despite being slower than Spark on the smaller datasets we
tested, Arrow-Spark gradually becomes relatively faster than
Spark for larger datasets. We depict this effect in the lineplot of
Figure 5, which shows the relative speedup of our framework,
when compared to default Spark. This effect is because Arrow-
Spark has several sources of constant overhead. Using the JNI
bridge is the largest cause of overhead. The reading itself is
slightly faster than with Spark, causing the difference between
the measured systems to grow with the increase in dataset
size. We found similar patterns when scaling the cluster size
between 4 and 32 nodes.
Conclusion-2: Arrow-Spark scales well with dataset sizes.
Its advantage over Spark is highest with 1-2 TB datasets.
Practitioners can leverage Arrow-Spark at zero additional cost
with larger dataset sizes.

D. E3: Row-wise Formats

Arrow-Spark supports multiple file formats through Arrow
functionality. We performed an experiment comparing Arrow-
Spark and default Spark on CSV data. The results are dis-

71.5 143.1 286.1 572.2 1144.4
Dataset size [GB]

0

200

400
Ex

ec
ut

io
n

Ti
m

e
[s

]

0

2

4

6

Re
la

tiv
e

sp
ee

du
p

of
 A

rro
w-

Sp
ar

kArrow-Spark Spark

Fig. 6: Arrow-Spark is faster than Spark with CSV files: Exe-
cution time (bars) and relative speedup (curve) on increasing
CSV data sets.

71.5 143.1 286.1 572.2 1144.4
Dataset size [GB]

0

20

40

60

Ex
ec

ut
io

n
Ti

m
e

[s
]

uncompressed gzip snappy

Fig. 7: Arrow-Spark leverages compression: Execution time
for Arrow-Spark with different compression techniques for
parquet data.

played in Figure 6. Our implementation is significantly faster
than Spark, starting at a speedup factor of approximately 4.5.
Larger datasets do not influence this speedup, which remains
constant over all dataset sizes we tested.

This is due to Spark’s inefficient CSV reader, the Java-
based Univocity-CSV parser [27]. By contrast, our connector
works with the highly efficient C++ Arrow Dataset API
implementation. In cases where parsing is involved, using
native code commonly is much more performant than other
solutions. The cost of processing more data is higher for Spark,
and much lower for Arrow-Spark due to the differences in
parsers. This explains why using larger datasets results in a
relatively bigger runtime increase for Spark.
Conclusion-3: Overall, Arrow-Spark brings significantly
higher performance for ingesting text-based file formats than
default Spark and the performance difference is constant with
respect to dataset size. Practitioners should always choose
Arrow-Spark for such file formats.

E. E4: Parquet Compression

Arrow-Spark can leverage parquet compression. We com-
pare the performance of Arrow-Spark under several compres-
sion options. The results can be found in Figure 7. Note that
using compressed parquet files in practical situations produces
vastly different results from the results we obtained in our
experimental setup using RAMDisk. Usually, the bottleneck
for reading data is I/O. Using compressed data trades I/O
for increased CPU load. In our setup, we deploy data on
RAMDisk, and we have no I/O bottleneck. Reading com-
pressed data only increases CPU load in this case, decreasing
performance. We compare reading uncompressed parquet with
snappy and gzip. When reading from memory, without much
I/O overhead, reading compressed data is slower due to the
added CPU overhead of decompressing it.
Conclusion-4: Arrow-Spark is able to leverage various com-
pression algorithms for parquet files. When leveraging slower

10 20 50 100
Selectivity [% columns]

0

20

40

Ex
ec

ut
io

n
Ti

m
e

[s
]

0.0

0.5

1.0

Re
la

tiv
e

sp
ee

du
p

of
 A

rro
w-

Sp
ar

kArrow-Spark Spark

Fig. 8: Arrow-Spark pushes down projections: Execution time
(boxplots) and relative speedup (curve) when reading 9.6
billion rows in batches of 32,768 rows, varied projection
selectivity.

I/O media, these can help practitioners by trading I/O volume
for increased CPU-load.

F. E5: Column Projection

One benefit of many columnar dataformats is the ability to
project columns, i.e. to select a subset of the total number of
columns for reading at little to no cost. Arrow-Spark pushes
down projection operations from Spark to Arrow. The benefit
of doing this is that Arrow becomes in charge of providing
subsets of data. Practitioners need not change code, but use
the Arrow-Spark interface we designed, because projections
are directly controlled by the Spark query optimizer. The
results can be found in Figure 8. When selecting very few
columns, Spark is relatively quicker because it pushes down
projections to its parquet reader, while Arrow-Spark pushes
down to Arrow over the JNI. When selecting more columns,
Arrow-Spark becomes relatively faster due to its advantage
over larger data sizes. Overall, this behavior is consistent with
findings from E2. Although Spark is seemingly faster at higher
selectivities, this is relative: on real-world datasets, even 1%
selectivity could leverage datasets of over 1TB, at which point
Arrow-Spark’s performance is superior.
Conclusion-5: Arrow-Spark is able to leverage projections for
parquet files, effectively pushing down projection queries to
the data layer, minimizing data movement.

IV. RELATED WORK

Several connector extensions allow users to read new
file formats or datasource backends, such as HDF5 or
netCDF [28], as well as extensions on Hadoop to allow
efficiently reading of highly structured array-based data. Al-
bis [29], proposes a new columnar-hybrid format to be used
with modern hardware. Frameworks like MongoSpark [30]
and Databricks Spark-RedShift [31] connect a specific back-
end to Spark. There also are extensions to improve existing
reading implementations: Intel Optimized Analytics Package
(OAP) [25], and the JVM Arrow dataset API [24]. Our
connector has a different approach to memory allocation,
backward-compatibility, and we support more file types at the
moment.

Databricks [32] also provides several connectors separating
execution from data layers, such as JDBC and ODBC connec-
tors [33]. The difference between such projects and our work is
that we provide a separation layer between execution and data

ingestion with high interoperability for any (Arrow-enabled)
datasource. There is no official support for using Core (Scala)
Spark together with Core Arrow (C++). Our system provides
such support.

V. CONCLUSION

We investigated decoupling the computation and the data
(ingestion) layers. This is needed for enabling interoperabil-
ity and reducing the amount of data conversion. We built
a prototype that leverages Arrow-enabled data sources to
Apache Spark, effectively decoupling Spark’s computation
from Arrow’s data ingestion. Through our experimentation, we
concluded that using connectors like ours is zero-cost: Arrow-
Spark not only retains overall performance, but in some cases
even significantly improves it. Next to improved performance,
we gain the ability to access any datasource that implements
support for Arrow, allowing us to connect to many different
data processing frameworks, data storage systems and file
formats.

ACKNOWLEDGEMENTS

The work in this article was in part supported by The Dutch
National Science Foundation NWO Veni grant VI.202.195,
by the US National Science Foundation under Cooperative
Agreement OAC-1836650, by the US Department of Energy
ASCR DE-NA0003525 (FWP 20-023266), and by the Center
for Research in Open Source Software (cross.ucsc.edu)

REFERENCES

[1] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica et al.,
“Spark: Cluster computing with working sets.” HotCloud, vol. 10, no.
10-10, p. 95, 2010.

[2] Apache Software Foundation, “Hadoop.” [Online]. Available:
https://hadoop.apache.org

[3] B. Dageville, T. Cruanes, M. Zukowski, V. Antonov, A. Avanes,
J. Bock, J. Claybaugh, D. Engovatov, M. Hentschel, J. Huang et al.,
“The snowflake elastic data warehouse,” in Proceedings of the 2016
International Conference on Management of Data, 2016, pp. 215–226.

[4] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache flink: Stream and batch processing in a single
engine,” Bulletin of the IEEE Computer Society Technical Committee
on Data Engineering, vol. 36, no. 4, 2015.

[5] M. H. Iqbal and T. R. Soomro, “Big data analysis: Apache storm
perspective,” International journal of computer trends and technology,
vol. 19, no. 1, pp. 9–14, 2015.

[6] R. Shree, T. Choudhury, S. C. Gupta, and P. Kumar, “Kafka: The modern
platform for data management and analysis in big data domain,” in
2017 2nd International Conference on Telecommunication and Networks
(TEL-NET), 2017, pp. 1–5.

[7] M. Hirzel, H. Andrade, B. Gedik, G. Jacques-Silva, R. Khandekar,
V. Kumar, M. Mendell, H. Nasgaard, S. Schneider, R. Soulé et al.,
“Ibm streams processing language: Analyzing big data in motion,” IBM
Journal of Research and Development, vol. 57, no. 3/4, pp. 7–1, 2013.

[8] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M. I. Jordan, and I. Stoica, “Ray: A
distributed framework for emerging ai applications,” in Proceedings
of the 13th USENIX Conference on Operating Systems Design and
Implementation, ser. OSDI’18. USA: USENIX Association, 2018, p.
561–577.

[9] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica, “Graphx:
A resilient distributed graph system on spark,” in First international
workshop on graph data management experiences and systems, 2013,
pp. 1–6.

[10] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi et al., “Spark sql:
Relational data processing in spark,” in Proceedings of the 2015 ACM
SIGMOD international conference on management of data, 2015, pp.
1383–1394.

[11] K. Chodorow, MongoDB: the definitive guide: powerful and scalable
data storage. ” O’Reilly Media, Inc.”, 2013.

[12] D. Chappell et al., “Introducing windows azure,” Microsoft, Inc, Tech.
Rep, 2009.

[13] D. Vohra, “Apache parquet,” in Practical Hadoop Ecosystem. Springer,
2016, pp. 325–335.

[14] Apache, “Apache orc - high-performance columnar storage for hadoop,”
https://orc.apache.org/, Apache Software Foundation, accessed: 2020-
11-06.

[15] M. Rocklin, “Dask: Parallel computation with blocked algorithms and
task scheduling,” in Proceedings of the 14th python in science confer-
ence, vol. 126. Citeseer, 2015.

[16] MATLAB, version 7.10.0 (R2010a). Natick, Massachusetts: The
MathWorks Inc., 2010.

[17] G. Van Rossum et al., “Python,” 1991.
[18] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in 12th {USENIX} symposium on operating
systems design and implementation ({OSDI} 16), 2016, pp. 265–283.

[19] cuDF community, “cudf - gpu dataframes,”
https://github.com/rapidsai/cudf, RAPIDS, accessed: 2020-11-16.

[20] A. D. Team, https://arrow.apache.org/docs/python/dataset.html#reading-
from-cloud-storage, Apache Software Foundation, accessed: 2020-11-
08.

[21] ——, “Apache arrow,” https://arrow.apache.org, 10 2018.
[22] Anonymous, “Arrow-spark,” https://github.com/Sebastiaan-Alvarez-

Rodriguez/arrow-spark-publication, 2021.
[23] A. D. Team, “Apache arrow java implementation,”

https://arrow.apache.org/docs/java/, 10 2018.
[24] H. Zhang, “Arrow-7808: [java][dataset] implement dataset java api by

jni to c++,” https://github.com/zhztheplayer/arrow-1/tree/ARROW-7808,
Github, Apache Arrow community, accessed: 2020-09-14.

[25] I. Corporation, “Optimized analytics package for spark platform (oap),”
https://github.com/Intel-bigdata/OAP , Github, Intel Corporation, ac-
cessed: 2021-01-15.

[26] A. Uta, A. Custura, D. Duplyakin, I. Jimenez, J. Rellermeyer,
C. Maltzahn, R. Ricci, and A. Iosup, “Is big data performance repro-
ducible in modern cloud networks?” in 17th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 20), 2020, pp.
513–527.

[27] T. univocity team, “univocity-parsers,”
https://github.com/uniVocity/univocity-parsers , Github, uniVocity,
accessed: 2021-02-01.

[28] J. Liu, E. Racah, Q. Koziol, R. S. Canon, and A. Gittens, “H5spark:
bridging the i/o gap between spark and scientific data formats on hpc
systems,” Cray user group, 2016.

[29] A. Trivedi, P. Stuedi, J. Pfefferle, A. Schuepbach, and B. Metzler, “Albis:
High-performance file format for big data systems,” in 2018 USENIX
Annual Technical Conference (USENIX ATC 18), 2018, pp. 615–630.

[30] R. Lawley, “Apache spark connector for mongodb,”
https://www.slideshare.net/mongodb/how-to-connect-spark-to-your-
own-datasource, https://databricks.com/blog/2015/03/20/using-
mongodb-with-spark.html, MongoDB, accessed: 2020-11-06.

[31] Databricks, “Databricks,” https://github.com/databricks/spark-redshift,
Databricks, Github, accessed: 2021-02-01.

[32] ——, “Databricks,” https://databricks.com/, Databricks, accessed: 2021-
02-01.

[33] ——, “Databricks,” https://docs.databricks.com/data/data-sources/sql-
databases.html, Databricks, accessed: 2021-02-01.

