
Attributes Assessing the Quality of Microservices Automatically
Decomposed from Monolithic Applications

Michel-Daniel Cojocaru
Vrije Universiteit Amsterdam

m.cojocaru@student.vu.nl

Alexandru Uta
Vrije Universiteit Amsterdam

a.uta@vu.nl

Ana-Maria Oprescu
Universiteit van Amsterdam

a.m.oprescu@uva.nl

Abstract—The architectural styles in the world of software
development are constantly evolving. Recently the microservice
architecture is gaining more and more traction, building on
concepts of Service Oriented Architecture (SOA) and steering
further away from monolithic architectures. Emerged from agile
communities, the microservice oriented architecture implies a
number of small sized microservices independently deployable.
The adoption of microservices as base for creating enterprise
applications is certain, yet many companies intend to migrate
from the old monolithic style instead of creating new products
mainly due to cost related implications as well as challenging and
complex tasks. Several tools and approaches for semi-automatic
decomposition of monolithic applications to microservices have
emerged, yet many of them still struggle to verify the result
of such process, the architect being indispensable for assessing
the output microservices. Although this area is intensely studied,
no unanimously accepted and clear guidelines for defining a
good microservice exist. This survey focuses on providing a
comprehensive and broadly applicable set of quality assessment
criteria for microservices resulted from semi-automatic migration
tools or techniques. Our study aligns with industry requirements,
including a case study which further validates our set of quality
attributes. In the refinement step of the quality attributes set, the
prospect of automating the process of validation is also discussed.

I. INTRODUCTION

The microservice architecture is currently the most popular
architecture for companies creating new applications, due to its
advantages, such as agility or scalability [18]. The architecture
has a crucial role in the software life-cycle, for example to en-
sure quality and critical attributes of the software [23]. To take
advantage of the microservice-style architecture, much effort
has been invested into porting legacy, monolithic applications.
Automated tools [4], [20] already exist to decompose large
applications into tiny services. However, there is no conceptual
framework for assessing the quality of these decomposed
applications. In this article, we conduct a comprehensive
study of the most applied techniques to study the quality of
decomposed services.

While the microservices architecture has many definitions,
we choose that proposed by Martin Fowler [1]: building an
application as a group of services each designed for a spe-
cific business capability, intercommunicating via lightweight
mechanisms while being independently deployable.

Microservice Architectures (MSA) are built upon concepts
from Service Oriented Architecture (SOA), their main focus
consisting of partitioning services in relation to business

capabilities. However, MSA differs from SOA through its
proliferation of complete isolation between the microservices.
The MSA borrows from SOA the idea of componentization as
services, designed using bounded contexts. While SOA merges
correlated functionalities [6] only from a business perspective,
MSA also targets the size of the service. If granularity of the
components is the main focus of the architecture, and keeping
state in the application is not necessary, one might consider
Serverless Computing [6], instead of MSA.

MSA focuses on agile development with DevOps practices
for continuous integration and delivery, while keeping the
data management and interaction of the services decentralized.
Regarding the sharing philosophy, MSA focuses more on
isolation and autonomy relying on choreography, while SOA
focuses on reusability relying on orchestration [2].

Although considerable research has been conducted into
microservices, some SOA-inherited challenges still persist:
identifying interface boundaries, finding appropriate granular-
ity, ensuring proper automatic deployment, utilizing testing
tools. Identifying ”good” microservices does not focus only
on partitioning the system for easy maintenance, but also de-
scribes the evolution of the system and its scaling capabilities.

An important design issue that has to be considered in
MSA is the functionality each service possesses, that has to
be carefully split/allocated with the appropriate granularity.
In accordance with Conway’s Law [4], organizations typ-
ically produce system architectures/designs that mirror the
organization’s communication patterns: the natural flow of
interaction between the teams developing a software product
is embedded in the calls/interaction/communication between
the microservices/components.

Issues specific to the monolithic architectures, such as the
system becoming highly coupled and hard to maintain, can
be overcome by migrating to MSA. An increasingly adopted
option for resolving existing issues (without major cost impli-
cations), MSA provides maintainability to the system and in-
creases the rate at which software products are delivered [18].

In the following, we present the most difficult to test archi-
tectural qualities identified in scientific literature. According to
existing literature [24], automated testing is the second most
occurring issue regarding the migrating process. Regarding the
architecture, the main issues identified are (1) high coupling
(2) service boundaries identification dilemmas, and (3) system
decomposition [24], in this context referring to decomposition
around business capabilities.



Service composition is a recurring issue in the process of
designing a MSA [3] and lacks a sound methodology to as-
sess the quality of microservice-oriented decompositions [16],
while architecture impact analysis is an unexplored area [3].
Thus, it is safe to assume that with all recent developments
in automating the migration process, the validation of resulted
microservices still lacks a clear set of quality criteria.

The goal of our study is to identify a minimum required
set of quality assessment criteria applicable to any microser-
vice resulted from migrating a monolithic application to a
microservice architecture. To this end, we first identify all
quality assessment criteria explored in related literature. Next,
we refine this set by imposing two additional meta criteria:
meaningfulness and feasibility of implementation. The former
considers the applicability of a quality attribute to a microser-
vice at component level. The latter considers if, given a quality
attribute, a workload description was identified in literature.

Our study is organized as follows: Section II describes
our research methods; Section III describes two different
decomposition techniques; Section IV presents two types of
software analysis, used to label the identified validation cri-
teria; Section V presents three decomposition approaches and
constructs the minimum set of quality assessment criteria of
microservices from the perspective of two self imposed meta-
criteria: meaningfulness and feasibility of implementation. A
case study based on an interview with an industry expert is
included for ensuring alignment to industrial needs. Section VI
presents related work, and we conclude in Section VII.

II. RESEARCH METHODS

Our research focuses on scientific literature gathering and
analysis. Selecting a complete literature corpus is crucial to a
literature survey, and we explain in detail our mapping.

Mapping Strategy Our literature study survey is relying
on several different research methods. The core [3], [5],
[13], [17] scientific papers were proposed by the authors
from their experience. From that set, we follow both forward
and backward snowballing sampling approaches [24] resulting
in 9 additional references. We ensure the completeness of
the literature corpus by also using keywords-based unguided
research, yielding 18 additional papers.

Search Domain Our literature corpus consists of 29 sci-
entific papers published between 1998 and 2018 gathered
from the following digital libraries: IEEEXplore, ACMDL,
ResearchGate, Scopus, SemanticScholar, GoogleScholar.

Keywords: {microservices and decomposition} or
{microservices and quality and criteria} or {microservices
and metrics} or {microservices and quality and metrics}
or {microservices and validation} or {microservices and
metrics and validation}.

0%

20%

40%

60%

13%

29%

58%

Pu
bl

ic
at

io
ns

in
Pe

rc
en

t

Gathering Method
Core

Snowballing
Keywords

Fig. 1: Distribution of corpus across gathering methods.

Inclusion Criteria
• Studies are written in English
• Studies are accessible electronically
• Studies are published in scientific journals or conferences
• Studies are related to our research (here referring to

keywords appearance in text)

III. DECOMPOSITION TOOLS

Although there are several decomposition approaches in lit-
erature [4], [20], we only focus on those that present a certain
degree of automation. We identified two tools able to semi-
automatically decompose monoliths into microservices [4],
[20]. The tools do not provide correct results in 100% of
the cases. Furthermore, the two approaches yield different
decompositions for the same input application.

I. Service Cutter [4] is a semi-automatic decomposition
tool. The concept of nanoentity is introduced for the three
resource building blocks: data, operations and artifacts. ”Data”
represents the subset of system’s data on which a microservice
has ownership. ”Operation” is a business rule or logic process
applied on data. ”Artifact” is a snapshot of un-/processed
”Data” or ”Operation”, expressed in an unified format.

The decomposition process identifies a set of microservices
to which nanoentities are assigned. There is a one-to-many
relation between the microservice and the nanoentities, yet a
nanoentity can be assigned to only one microservice. Grouping
the nanoentities for microservice extraction uses MSA prin-
ciples, e.g., coupling. The score of the coupling criteria is
used as input to a clustering algorithm that finds the optimal
grouping, respecting all the manually imposed constraints. The
output is provided as a ”service cut”. A coupling criteria cata-
logue comprising architectural requirements such as cohesion,
compatibility, constraints and communication patterns guides
the semi-automatic decomposition process.

Workload Description: The Service Cutter approach was
evaluated by comparison against manual decomposition ac-
cording to the authors’ best knowledge. The inter-service
calls are not considered. The evaluation of the Service Cutter



consisted of running the decomposition prototype over two
applications, a fictitious ”Trading System” and one sample
application from literature [34], ”Cargo Tracking”. The re-
sulted cuts were inspected and classified according to a self im-
posed four-level scoring system ranging from excellent, good,
acceptable to bad. The assessment of both decompositions
used a deterministic and a non-deterministic clusterization
algorithm. The results for both algorithms were ”good” for the
”Trading System”. However, for the ”Tracking Cargo System”
the deterministic algorithm yielded a ”bad” service cut, while
the non-deterministic one resulted in an ”acceptable” cut.

II. Microservice Identification Through Interface Analy-
sis [20] relies on mapping exposed interfaces to a predefined
shared vocabulary (i.e., Schema.org), which can be replaced
by any domain-specific ontology to extract microservice candi-
dates from monolithic applications. It addresses quality criteria
of microservices, such as granularity, coupling and cohesion.
The process of mapping the concepts exposed in the inter-
faces specifications to the vocabulary uses statistical analysis
through co-occurrence functions to match interface’s terms
with the input vocabulary in order to form decompositions
based on semantics. By introducing a reference architecture,
and not only relying on authors’ best knowledge regarding the
service composition, this approach proves more reliable.

Workload Description: The evaluation uses the sample ap-
plication ”Cargo Tracking System” without achieving the ex-
pected result [20]. The evaluation used two more applications,
”Money Transfer” and ”Kanban Board”. The first achieved
80% correctness, while the second scored 77% correctness.

IV. VALIDATION CRITERIA

Metric-based evaluation is compulsory for assessing the
quality attributes of microservices. A vast number of quality
criteria measuring a variety of aspects concerning microser-
vices exist [27]. However, evaluation approaches are scarce
[11], while assessment methods for semi-automatic decom-
positions are entirely missing [29]. We first define the types
of analyses required by a quality attribute. Next, we describe
each identified quality attribute and its workload description.

The validation of semi-automatic decomposition methods
should take into consideration the type of analysis required
for each quality attribute. Therefore, in the following, static
analysis together with dynamic analysis are briefly described.

Static Analysis: is a technique that does not require ex-
ecution of the analyzed software. Scanning the code of a
microservice before being linked to other microservices can
aid the identification and correction of vulnerabilities without
incurring the costs of running the code.

Dynamic Analysis: is a technique that requires the exe-
cution of the analyzed software, usually employed when the
application code is not available. The most common type of
dynamic analysis consists of Unit Tests and it has the benefit
of validating static analysis findings or identify new flaws.

A. Static Analysis
Next, we present the list of identified criteria that can be

assessed via static analysis. Each metric is described and their

TABLE I: Quality Criteria Overview. The presence of work-
load description is indicated by ⊕, its absence by 	.

Quality Attributes

Static Analysis Dynamic Analysis

C
ita

tio
ns

G
ra

nu
la

ri
ty

L
O

C
O

pe
n

In
te

rf
ac

e
H

ig
h

C
oh

es
io

n
L

oo
se

C
ou

pl
in

g

E
xe

cu
tio

n
C

os
t

R
es

po
ns

e
Ti

m
e

A
va

ila
bi

lit
y

Su
cc

.E
xe

c.
R

at
e

U
sa

ge
Fr

eq
ue

nc
y

Sc
al

ab
ili

ty
In

de
pe

nd
en

ce
M

ai
nt

ai
na

bi
lit

y
D

ep
lo

ym
en

t
H

ea
lth

M
an

ag
em

en
t

M
od

ul
ar

ity
M

an
ag

ea
bi

lit
y

Pe
rf

or
m

an
ce

R
eu

sa
bi

lit
y

Te
ch

.H
et

er
og

en
ei

ty
A

gi
lit

y
Se

cu
ri

ty
L

oa
d

B
al

an
ci

ng
O

rg
.A

lig
nm

en
t

[9] ⊕ 	 	 ⊕ 	 	
[10] 	 	 	 ⊕ ⊕ ⊕ ⊕ 	 ⊕ 	 ⊕ 	 	 ⊕ 	 	
[11] ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ 	 	 	 	 ⊕ ⊕ 	 	 	
[12] ⊕ ⊕ 	
[13] ⊕ ⊕ ⊕ 	 ⊕ ⊕ ⊕ ⊕ 	
[14] ⊕ 	 	 	 	
[15] 	 ⊕ 	 ⊕ ⊕ 	
[16] ⊕ 	 	 	 ⊕ 	 	
[17] ⊕ ⊕ 	 	 	 	 	 	 	 	 	 	 	 	
[18] 	 	 	 	 	 	 	 	 	
[19] 	 	 ⊕ 	 ⊕ ⊕ 	 ⊕ ⊕ 	

Criteria Meaning
Granularity Size of microservice
LOC Lines of code
Open Interface Accessible and standardized interface
Succ. Exec. Rate Rate of successful executions
Tech. Heterogeneity Heterogeneity regarding the programming language
Org. Alignment Alignment with organization’s communication patterns

respective workload descriptions are presented together with
guidelines identified in literature.

Granularity: The most controversial quality attribute of
a microservice is its granularity, also referred as size. The
controversy stems from the lack of a generally-accepted defi-
nition for the target size of a microservice. From a workload
description perspective, it can be measured using Lines of
Code (LOC) [27] or the number of exposed interfaces [11].

LOC: a metric defined by the number of lines of code
written for the software entity in question. Although most of
the times granularity is associated with the number of ”Lines
of Code” [27], it is not a very descriptive metric per se. In
industry, the size of a code base represented as LOC ranges
from less than 100 LOC to more than 10000 LOC [12], making
this metric rather informative than reliable. From a workload
description perspective, a more useful application of this
metric is determining a relative size between microservices,
i.e., use statistics to identify components that are relatively
”big” inside the same system [27].

Open Interfaces: a metric borrowed from SOA which
describes granularity of microservices via the number of
open/exposed interfaces. From a workload description per-
spective, the size of a microservice is quantifiable by investi-
gating the number of operations available through the exposed



interfaces [11]. The operations can be weighted based on their
granularity or number of parameters [27].

Cohesion: represents the degree to which the operations
provided by a microservice cater to only one functionality.
Although recurrently mentioned in literature, this property is
difficult to measure automatically due to its semantic essence.
From a workload description perspective, cohesion can be
measured via the exposed interfaces by asserting the similarity
between the parameters’ data types [27]. Another approach is
considering the invocation behavior of the operations provided
by the interfaces, where a ratio is calculated from the number
of operations per client and the number of clients times the
number of available operations [27]. Average values may be
used to determine the components with low cohesion, which
are candidates for decomposition [27].

Coupling: represents the dependencies and connections of
a microservice to another. A clear guideline is that circular
dependencies should be avoided [28]. Hence, when microser-
vices are identified to circularly reference one another, they
should became candidates for a merger. From a workload
description perspective, the degree of coupling can be cal-
culated as the number of calls to a microservice divided by
the number of invocations that the microservice is making
towards others [27]. Average values may be used to identify
microservices that have relative tight coupling (containing
redundant invocations), which are candidates for refactoriza-
tion [27]. A popular method for testing the coupling between
microservices is using Docker Swarm, which provides total
isolation and decoupling to the containers [13], together with
a network protocol analyzer (i.e. WireShark) for identifying
the invocations and dependencies.

B. Dynamic Analysis

Next, we present the list of identified criteria that can be
assessed via dynamic analysis. Each metric is described and
their respective workload descriptions are presented together
with guidelines identified in the literature.

Execution cost: Although the cost implications of executing
a certain microservice are seldom mentioned in literature, we
consider this aspect equally important to others, especially for
industry [8], [10]. From a workload description perspective,
this is an additive attribute, computed as the monetary cost of
the resources used for running the microservice [9]. It depends
on the deployment platform chosen by the DevOps team. The
cost can be estimated at design time and corrected after the
implementation is evaluated at execution time.

Response time: the anticipated delay between the time
when a request to a microservice is issued and the time
when the result is delivered [9]. From a workload description
perspective, it is a max-operator attribute and its measure unit
is seconds [9]. It only considers the execution time, excluding
the network delay time (which is dependent on the geo-
location of the client). When measuring synchronous calls,
it considers the longest response time, while for asynchronous
calls, it considers the average time spent [11].

Availability: the proportion of time the microservice is
accessible within a required time period and from a workload
description perspective is usually quantified as a percent-
age [9]. Most of the contemporary cloud platforms Service
Level Agreements (SLA) guarantee availability of 99.9999%
or above. This is a multiplicative quality attribute [9], thus a
slight decrease in the availability of one microservice that has
high coupling is dramatically decreasing the overall availabil-
ity of the system.

Successful execution rate: the ability of a service provider
to successfully fulfil the requests within a given period of
time [9]. From a workload description perspective, it is
measured as a number between 0 and 1 or a percentage [9]
calculated as the ratio between successful requests and the
total number of requests.

Usage Frequency: the ratio between the requests made to
the assessed microservice and all the requests made in the
entire system. This is an additive quality attribute [9]. From a
workload description perspective, we consider it measurable
as a number between 0 and 1 or a percentage, although we
did not identified a formal description [9].

Scalability: the ability of a microservice to function cor-
rectly (as designed) irrespective of the changes in size (amount
of resources) without inquiring performance penalties [19].

• Horizontal scalability: replicate the microservice.
• Vertical scalability: increase the amount of resources

allocated to a microservice.
From a workload description perspective, the degree of scal-
ability can be calculated by analyzing the distribution of
synchronous requests provided by the exposed interfaces, a
high diversity of requests indicating poor scalability [19].

Independence: has multiple connotations, the most impor-
tant being the isolation of the microservice with respect to
others with which it should only communicate via the exposed
interfaces [11]. From a workload description perspective, the
independence of a microservice can be synthesized via the
coupling attribute or calculated via dependency graphs [10].
Other connotations are independence in the technology used
for development and independence of the teams developing
the microservice [12], [15].

Maintainability: is a broader concept described by a variety
of quality criteria such as granularity, technology hetero-
geneity, coupling and cohesion. From a workload description
perspective, the maintainability can be represented via multiple
metrics such as the number of interfaces exposed by the
microservice, number of technologies used, or the number
of asynchronous dependencies [11]. Hence, a microservice is
considered maintainable if it presents high degree of cohesion,
low degree of coupling [27] and homogeneous technology
stack.

Deployment: The ease of deployment of microservices is
a very desirable quality attribute for industry, usually relying
on cloud infrastructure due to its automatic elasticity and on-
demand resource provisioning [10]. A typical scenario in-
volves fully automated deployment of containers each running
a microservice. From a workload description perspective, the



quality attribute of deployment is usually tested via execu-
tion timelines and instance graphs together with use-case
and sequence UML diagrams [10]. The deployment quality
attribute is also linked to lowering the execution cost [13]
via shortening the development cycles and increasing the
microservice maintainability.

Health Management: also known as resiliency to fail-
ure [10], is a quality attribute describing the ability of a
microservice to cope with failures. A microservice complies
to this property by saving the internal state, and restarting
automatically while loading the most up-to-date state prior to
the failure. This term addresses both compute resiliency (the
process can restart) and data consistency (no data loss). From
a workload description perspective, it is a binary attribute with
”yes” or ”no” values and it is verified via instance graphs or
type graphs [10].

Modularity: a quality attribute relying mostly on cohesion
through the rule of ”single responsibility” [10]. It is also
influenced by the complexity of the system, referring to the
granularity of the microservice and the separation of business
concerns. Thus, from a workload description perspective, is
quantifiable via the number of exposed interfaces.

Manageability: is a quality attribute referring to the degree
of centralization, where none is best. Additionally, a manage-
able microservice should be audible and self-managed (or with
minimum centralized control) [10]. Similarly to the maintain-
ability, a microservice is considered manageable if it presents a
high degree of cohesion and a low degree of coupling. From
a workload description perspective, it may be calculated by
inspecting the dependencies of the microservice [10].

Performance: has different meanings depending on the con-
text [10]. For microservices, performance is usually regarded
as a combination of response time and throughput [14]. The
throughput of a microservice is the amount of requests that
can be processed in one time unit [19]. It is dependent on the
technology used for development and heavily related to the
degree of internal optimality of the microservice, being mea-
surable at run-time. From a workload description perspective,
it may be computed as the longest synchronous call or the
average size of message, for asynchronous calls [11].

Reusability: is a very desirable quality attribute for indus-
try [4], due to its major cost reduction prospects. Although a
microservice development might imply high costs to achieve
pluggability, the resulting reusability might in fact save devel-
opment cost. Moreover, the microservice can be repurposed
so that with little changes can be used outside of its design
time domain. From a workload description perspective, the
reusability is shown via deployment UML diagram [10].

Technology Heterogeneity: refers to agnosticism regarding
the programming language used to develop the microser-
vice [10]. No formal workload description was identified.

Agility: is bound to the context of development and ease of
adaptation to minor changes (usually iterative and incremen-
tal) [10], which is in turn relying on the deployment platform
and its continuous delivery capabilities. From a workload

description perspective, we consider agility related to the
granularity of the microservice.

Security: is a recurrently mentioned quality attribute in
the literature. However, we identified little security testing
methodologies for microservices. From a workload description
perspective, manual inspection of execution timelines together
with UML diagrams [10] are used in assessing the security of a
microservice. This might be caused by the security vulnerabil-
ities being strictly dependent on the domain, implementation
or utilized technologies of the microservice.

Load Balancing: represents the workload distribution
among microservices and only has sense in the horizontal
scalability context [19]. We identified no workload description
for this quality attribute at a microservice level.

Organizational Alignment: is a quality attribute of
a microservice which represents the degree to which,
according to Conway’s Law [5], the dependencies between
the microservices mirror the communication pattern of the
organization that is developing them. The alignment to
the microservice paradigm should decrease the overhead
between different teams developing different microservices,
while maximizing the internal communication efficiency
and cohesion between developers implementing the same
microservice [10]. We identified no workload description for
this quality attribute.

V. DISCUSSION

In order for the criteria assessing conformance to the quality
attributes to have meaning, they must be discussed in a
decomposition context. Therefore, we briefly describe three
decomposition methods. Next, we discuss the quality attributes
in their respective contexts followed by a case study conducted
in collaboration with an industry practitioner. This case study
helps validate our findings from an industry perspective.

As the migration process evolved, researchers started to
address the problem of architecture decomposition in a more
systematic manner. Richardson proposed four partitioning
strategies [25]: (1)”Decomposition by business capability”
and (2)”Decomposition by sub-domain”, which constitute the
most abstract patterns requiring the architect’s intervention
for decision making [26]; (3)”Decomposition by verbs or use
cases” and (4)”Decomposition by nouns or resources”, which
lend better to automation if predefined criteria are considered.
”Decomposition by sub-domain” is referred in the literature
also as Domain Driven Design (DDD). Although DDD is
one of the most used techniques for shaping microservice
architectures, other methods have been used in this area also,
such as Architecture-centric Modeling [14] and Data Flow
Diagrams (DFD) .

A. Decomposition Methods

The following decomposition methods were considered
when selecting the minimum set of attributes due to their high
recurrence in the literature as references.



Domain Driven Design. The microservices architecture
mainly rely on domain-driven design, a technique in which
each microservice must serve a specific and limited function-
ality that is mirroring the specified business capability via
clear service boundaries. The composition has to align with
consistency constraints, while the microservices designed from
bounded contexts usually are aligned with the domain model
boundaries or communication patterns inside the organiza-
tion [4]. The components (microservices) are created follow-
ing the isolation principle, being independent between each
other and the technology used (including the programming
language), the deployment process and the team developing it
for the entire lifecycle of the microservice.

Architecture-Centric Modeling. This decomposition
method relies on extending the microservices with ”ambients”
that implement primitives which can be regarded as adaptable
boundaries in the business modelling process [14]. The
ambients contain aspects that describe the adaptation
behaviour required for dynamically altering the granularity,
therefore separating divergent business concerns and scoping
the boundaries of the microservices.

Data Flow Diagram. This decomposition method follows
a top-down approach in which dataflow diagram is created
by the architect and the client, that contains the business
requirements of the project, later on being iteratively refined
until the detailed dataflow diagram that meets the business
logic is obtained. An aggregation algorithm, then fuse similar
operations that posses the same type of output into a virtual
dataflow that is later partitioned by the formal algebra algo-
rithm into microservice candidates.

B. Meta Criteria

Additionally to the quality attributes identified in literature,
we propose two meta criteria: meaningfulness and feasibility
of implementation. The first considers whether each of the
quality attributes is applicable to the microservice at compo-
nent level, independent of its applicability at system-level. The
second considers the existence in the literature of a workload
description for each metric. The inclusion is relying on logical
and between the two meta-criteria.

C. Selecting the minimum set of quality attributes

In the following we challenge each quality attribute identi-
fied in the literature and decide its inclusion in the minimum
subset of quality attributes based on the two meta-criteria and
the attribute’s applicability to the decomposition methods.

Granularity: Although no consensus was reached over
the de-facto metric for assessing granularity, we do recom-
mend using the two identified. From feasibility of imple-
mentation perspective, ”Lines of Code” is usable only in
context of relativity compared to the other microservices
of the same system. Furthermore, the number of operations
available via exposed interfaces of a microservice is easy to
extract from available documentation. Both metrics should be
used to determine a relative size value compared to the rest
of microservices by using statistics. From a meaningfulness

perspective, granularity relates to the costs involved in de-
ployment of the microservice and its quality assurance costs.
This metric is applicable to all three decomposition techniques
with a particularly high flexibility for the Architecture-centric
Modeling, which allows variations in granularity.

Cohesion: Being a core principle of MSA, cohesion
is included in our minimum recommended quality attribute
set. From feasibility of implementation perspective, it is
measurable by asserting the similarity between the names
or parameters’ data types of the exposed interfaces. From
meaningfulness standpoint, the highly cohesive microservices
respect the principle of ”single responsibility” from MSA. This
metric is applicable to all three decomposition techniques.

Coupling: Low coupling, being a core principle of MSA
is included in our minimum recommended quality attribute
set. From feasibility of implementation perspective, it is mea-
surable via calculating the ratio between the number of depen-
dencies other microservices have to it, divided by the number
of dependencies it has towards other microservices of the
same system. We recommend avoiding circular dependencies
and use Docker Swarm for testing the degree of coupling
between the components. This metric is applicable to all three
decomposition techniques.

Execution Cost: At least for industry practitioners, an
important aspect of the software development is represented by
costs, therefore from a meaningfulness perspective, the execu-
tion cost is included in the recommended quality attributes set.
From a feasibility of implementation perspective, the execution
cost is calculated via estimations of cost at design time, based
on the resources’ price of chosen deployment platform. This
metric is orthogonal to all three decomposition techniques.

Response time: From a meaningfulness perspective
the response time is crucial for ensuring responsive-
ness/performance of the microservice resulted from migra-
tions. It should be compared to the response time of the mono-
lith for the same request. From a feasibility of implementation
perspective, response time is measured via programmatically
monitoring the elapsed time between issuing a request and
receiving a response. The caller of the microservice, calculates
the response time (also named latency) as the sum between
the network latency and the execution time. Following, the
execution time is measurable from inside microservice’s code.
This metric is applicable to all three decomposition techniques.

Availability: From a meaningfulness perspective, the
availability is more related to the chosen deployment platform,
rather than the microservice as a component, thus it is not
included in our minimum quality attribute set. This metric is
orthogonal to all three decomposition techniques.

Successful execution rate: From a meaningfulness per-
spective, the successful execution rate is not part of our mini-
mum set of quality attributes, as its composition encompasses
already included attributes, namely response time. This metric
is orthogonal to all three decomposition techniques.

Usage Frequency: From a meaningfulness perspective,
the usage frequency is not part of our minimum set of quality
attributes. This is due to the fact that it is measurable after the



implementation, and concerns other stakeholders. This metric
is orthogonal to all three decomposition techniques.

Scalability: Although scalability has meaning in the
context of the entire system and not only at microservice’s
level, we include it in the minimum quality attribute set due
to its importance in distributed systems. From a feasibility
of implementation perspective, it is measurable by assessing
the distribution of dependencies and diversity of synchronous
requests made by the microservice. This metric is applicable
to all three decomposition techniques.

Independence: From a meaningfulness perspective, in-
dependence of a microservice is synthesizeable from the
coupling attribute, thus it is not included in our minimum
quality attribute set. This metric is applicable to all three
decomposition techniques.

Maintainability: From feasibility of implementation per-
spective, this quality can be extracted from others already
included in the minimum set. Fine granularity, decreased level
of system’s technology heterogeneity and good scalability
indicate good maintainability. This metric is applicable to all
three decomposition techniques.

Deployment: From meaningfulness perspective, the de-
ployment is related to the chosen platform and concerns the
entire system, therefore it is not included in our minimum set.
From a feasibility of implementation perspective, it is tested
via execution timelines and instance graphs together with use-
case and sequence UML diagrams. This metric is orthogonal
to all three decomposition techniques.

Health Management: From a meaningfulness perspec-
tive the health management of a microservice is crucial
for coping to failures. From a feasibility of implementation
perspective, the health of a microservice can be implemented
by throwing an error if the response time exceeds a specified
threshold and restarting the container [13]. Having met both
meta-criteria it is included in our minimum set. This metric is
applicable to all three decomposition techniques.

Modularity: From a meaningfulness perspective, due to
the fact that modularity can be exposed via other already
included quality attributes such as cohesion, granularity, scal-
ability, it is excluded from our minimum set. This metric is
applicable to all three decomposition techniques.

Manageability: From a meaningfulness perspective, due
to the fact that manageability can be exposed via other already
included quality attributes such as high degree of cohesion and
a low degree of coupling, it is excluded from our minimum set.
This metric is applicable to all three decomposition techniques.

Performance: From a meaningfulness perspective, it can
be assessed through response time, an attribute already in-
cluded in our minimum set. Thus, performance is excluded.
This metric is applicable to all three decomposition techniques.

Reusability: From a meaningfulness perspective,
reusability also has beneficial cost implications, additionally
to repurposing the microservice. From a feasibility of
implementation perspective, it can be measured via
deployment UML diagrams, therefore being included in
our minimum quality criteria set. This metric is applicable

O
rt

ho
go

na
l

Included

A
pp

lic
ab

le

Excluded

Granularity, Cohesion,
Coupling, Scalability,

Response Time, Security,
Health Management

Maintainability,
Manageability,
Performance,

Modularity, Agility

Independence,
Deployment, Availability,

Load Balancing,
Usage Frequency,

Technology Heterogeneity,
Organizational Alignment,
Successful Execution Rate

Execution Cost,
Reusability

Fig. 2: Validation attribute categorization.

to the first two decomposition techniques, Domain-Driven
Design and Architecture-Centric Modeling, but is orthogonal
to Data Flow Diagram due to its focus on data.

Technology Heterogeneity: From a meaningfulness per-
spective, this attribute is more related to the chosen deploy-
ment platform, rather than to the microservice, thus it is not
included in our minimum quality attribute set. This metric is
orthogonal to all three decomposition techniques.

Agility: From a meaningfulness perspective, this attribute
can be expressed using granularity, an already included quality.
Thus, agility is excluded from our minimum set. This metric
is applicable to all three decomposition techniques.

Security: From a meaningfulness perspective, security is
a required quality attribute that every software has to posses,
therefore, being included in our minimum quality attribute
set. From a feasibility of implementation point of view, the
security aspect is dependent on the domain, implementation
or technologies used in development. However, as a general
guideline, the security is usually assessed via inspection of
execution timelines and UML diagrams. This metric is appli-
cable to all three decomposition techniques.

Load Balancing: From a meaningfulness perspective,
this attribute is more related to the chosen deployment plat-
form, rather than the microservice, thus it is not included in
our minimum quality attribute set. Furthermore, this metric is
orthogonal to all three decomposition techniques.

Organizational Alignment: From a meaningfulness per-
spective, it has advantages such as decreasing the overhead
of different teams developing different microservices and
maximizing the internal communication efficiency. From a
feasibility of implementation perspective, we identified no
workload description, thus leading to its exclusion from our
minimum quality attribute set. This metric is orthogonal to all
three decomposition techniques.



Minimum set of quality attributes. From the exhaustive
initial set of literature identified quality attributes, we
refined a minimum set of quality attributes (Figure 2) that
should be considered when assessing a microservice re-
sulted from a monolithic architecture migration process. We
based our refinement process on two self-proposed meta-
criteria: meaningfulness and feasibility of implementation.

D. Case Study

Since our minimum set of quality attributes contains char-
acteristics that concern industry practitioners, we interviewed
an expert. The interviewee was directly involved in decompo-
sition processes. By providing accurate insights from industry
his opinion is valuable to our study.

Validation of motivation: When asked about the issues
of monolithic architectures and the catalyst of architectural
shift, the practitioner first mentioned the tedious process of
developing monoliths. The monoliths were often difficult to
understand by new programmers who recently joined the
development team. New employees usually spent their first
couple of months on the project digesting the architecture
and data flow of the application. From a business perspective
the monolithic applications usually required long periods of
time to develop and debug, stretching the development cycles.
Additionally, deployments challenges generated by quality
assurance (QA), limited the number of releases at two per year.
Intriguingly, the costs involved in deploying the application
were considered minor priorities, the majority of costs being
inflicted by development.

Validation of migration processes: When asked about
the migration process from monoliths to microservices, the
expert described the process as an incremental transition from
the monolith. Firstly, functionality is extracted and converted
to a microservice which is then connected to the monolith.
This technique of incrementally externalizing functionality
has the positive side-effect of cost effective addition of new
features to the application. This is achieved simultaneously
with the externalization aspect of the migration. The load
is incrementally transferred from the monolith to the new
microservices via A/B testing.

Validation of migration type: When asked about which
is the cheaper option between a full rebuild and a migration,
the expert acknowledged that for large scale applications the
rebuild is not a viable option due to time and cost implications.
Nonetheless, there were also a small number of cases where
the rebuild was preferred due to intricacies of the legacy
implementation.

Validation of granularity: When asked about metrics
used in industry for assessing the granularity of microservices,
the expert acknowledged that many industry practitioners still
rely on LoC (lines of code). Another metric used is the amount
of endpoints multiplied by the amount of methods to assess
the granularity of microservices. There are several heuristics
used in practice for determining the size of the team therefore
scoping the granularity of the microservice, the most recurrent
being the pizza team size. Although the use of relative sizes

between components is a promising start for assessing the
granularity, it is not yet considered the ”holy grail” due
to it’s poor accuracy in less granular projects. Considering
the situation in which the granularity is extremely low (two
components) the metric would not provide useful information.
Industry practitioners often combine multiple metrics that are
scored in various forms for assessing a quality attribute.

Validation of cohesion: When asked about the use of
semantic analysis on the interfaces’ names for assessing the
cohesion of microservices, the industry practitioner deemed
the approach very creative yet not practical for industry use.
In the industry the main assessing technique of this quality
attribute still relies on the subjective opinion of the architect.
Usually together with the increase in size of components, prac-
titioners start to address the possibility of isolating functional-
ity in groups of business functionality. In such cases, following
the concept of Bounded Contexts [31], the components are
considered candidates for division.

Validation of coupling: When asked about practical
techniques of assessing coupling of microservices, the expert
described similar approaches to the assessment of cohesion.
Additionally, in industry architects search for bidirectional
communication paths in order to detect high coupling degree
between components. It is considered good practice to avoid
bidirectional communication altogether due to their inherent
dependencies that increase the coupling.

Validation of cost implications: In regards to the ex-
ecution costs, the industry expert presented an example of
a client who run an ad-hoc simulation for predicting costs.
Nonetheless, he agreed that cost estimations usually consists
of a mix between intuition and experience. In some cases
detailed predictions were made at design time, which was
only possible in the context of detailed knowledge about
the expected workload. In the industry, a back-track from
deployment stage to the design stage is rarely encountered due
to major costs implications. Furthermore, the execution cost is
often considered negligible in the context of hiring experienced
developers (which in US cost up to 200k USD/year). A con-
clusion of such examples is that shortening the development
cycles is usually the main goal, irrespective of small additional
costs that may occur.

Validation of response time: When asked about the as-
sessment of microservices’ response time, the industry expert
stated that latency is predominantly used and agreed that the
deployment platforms usually track the endpoints themselves.
In industry, automatic metric assessment is done via tools such
as Prometheus (or any other metric collector).

Validation of scalability: In regards to scalability of
microservices, the expert acknowledged that in industry there
is one overused metric: whether the microservice is stateless
or not. A system composed from stateful microservices is
more difficult to scale. The assessment of this quality at-
tribute is aided by the use of HTTP workload generators (e.g
ApacheBench [32]).

Validation of health management: When asked about
practical techniques of assessing health management of mi-



croservices, the industry expert stated that the common ap-
proach consists of manually or automatically producing chaos
inside the system by using tools such as Netflix’s ChaosMon-
key [33]. Often it happens manually, the industry practitioners
removing a component from the system in order to test
system’s resiliency.

Validation of reusability: When asked about assess-
ing reusability of microservices, the expert emphasized that
reusability is strictly dependent on the specificity of the
application’s domain. An ad-hoc produced solution was be
to inspect the dependency graph of the system and detect
the coupling. A service with low coupling is often deemed
reusable inside the same system. However this technique does
not provide insights about reusability of the service in the
context of another system. Another approach is to open-source
the service and monitor the number of stars (followers) it
acquires on Github indicating how many systems might be
reusing the service.

Validation of security: In regards to the assessment of
microservice’s security, the industry expert acknowledged that
the security is not bound to the microservice itself but rather
dependent on the technologies used and the particularities of
the application. Nonetheless, in his opinion, the microservice
architecture at least give the option of more security by
providing a way to isolate the vulnerability (sensitive data such
as credit card data, identities).

The interview does predominantly match our approach in
assessing the quality attributes of microservices included in
our minimum set, therefore providing food-for-thought for
researchers investigating a validation framework.

VI. RELATED WORK

A number of studies [28], [30], [31] have discussed the
validation process involved in migrations from monoliths to
microservices. However, our approach differs by focusing on
identifying the minimum comprehensive set, general and com-
monly applicable in the industry for validating microservice
migration cuts. Figure 3 shows the occurrence of attributes
from our minimum set across the considered studies.

A list of criteria was assembled [27] with a focus on main-
tainability, while analyzing the criteria with respect to their
applicability to the microservices architecture and, separately,
their measurability [29].

A similar study [30] identifies a set of constraints and
validation criteria prone to automation of assessing the con-
formance to microservice architecture. However, their focus
consists of two aspects: independence and shared dependen-
cies between the components, while our study refines an
exhaustive set of quality attributes based on two meta-criteria:
meaningfulness regarding the decomposition context and the
feasibility of implementation.

Other research validates the authors’ approach with respect
to: (a) a limited set of ”relevant principles of microservices”:
granularity, cohesion, coupling, and technology heterogene-
ity [16]; (b) a self-made expected architecture [4]; (c) inde-

[10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20]
0

5

10

15

5

16
15

3

9

5
6

7

14

9
10

3

6 6

2

5

1 1

4

6

3

7

Included
Excluded

Fig. 3: Minimum set of attributes occurrence in literature.

pendence, deployment, standardized interfaces, and granularity
of a microservice [15].

A similar study that considered the comprehensive set
of quality criteria for microservices lacks the analysis of
feasibility and required workloads for testing [17].

Research conducted on a broad range of quality attributes
of SOA [19] also encompasses the entire lifecycle of a
microservice, while our focus is on identifying the minimum
set of quality attributes applicable to microservice resulted
from semi-automatic decompositions.

VII. CONCLUSIONS AND FUTURE WORK

In this study we aimed to provide a sufficient and necessary
set of quality attributes applicable to microservices resulted
from semi-automatic decomposition tools or techniques. We
identified an exhaustive set of quality criteria used in the
literature considering both MSA and SOA.

Next, we discussed the inclusion of each identified qual-
ity attribute into our minimum recommended set of quality
attributes based on two meta-criteria: meaningfulness in the
decomposition context and feasibility of implementation and
augmented the discussion with a case study based on an
interview of an industry practitioner.

Although work still has to be done, this area is in full
maturation process. Identifying a subset of quality criteria for
microservices that are prone to automatic validation paved the
way to implementing an automatic validation tool. The future
tool should focus on assessing the quality of microservices
resulted from semi-automatic use of the above mentioned
decomposition techniques, creating a complete solution for
migrating monolithic applications to MSA.

REFERENCES

[1] M. Fowler and J. Lewis, Microservices, 2014. [Online]. Available:
https://martinfowler.com/articles/microservices.html

[2] M. Richards. ”Microservices vs. Service-Oriented Architecture”.
O’Reilly Media, 2016.



[3] P. D. Francesco, I. Malavolta and P. Lago, ”Research on Architecting
Microservices: Trends, Focus, and Potential for Industrial Adoption”, in
International Conference on Software Architecture (ICSA), Gothenburg,
2017, pp. 21-28.

[4] M. Gysel, L. Kolbener, W. Giersche and O. Zimmermann, ”Service
Cutter: A Systematic Approach to Service Decomposition”, in ESOCC,
Vienna, 2016, pp. 185-200.

[5] Conway, M.: Conways Law, [Online]. Available:
http://melconway.com/Home/Conways Law.html, last accessed
19/11/2018.

[6] E. van Eyk, L. Toader, S. Talluri, L. Versluis, A. Uta and A. Iosup,
”Serverless is More: From PaaS to Present Cloud Computing,” in IEEE
Internet Computing, 2018 pp. 8-17.

[7] Dragoni, Nicola, Saverio Giallorenzo, Alberto Lluch-Lafuente, Manuel
Mazzara, Fabrizio Montesi, Ruslan Mustafin and Larisa Safina, Mi-
croservices: Yesterday, Today, and Tomorrow, in Present and Ulterior
Software Engineering (2017).

[8] G. Granchelli, M. Cardarelli, P. D. Francesco, I. Malavolta, L. Iovino
and A. D. Salle, ”Towards Recovering the Software Architecture of
Microservice-Based Systems”, International Conference on Software
Architecture Workshops (ICSAW), Gothenburg, 2017, pp. 46-53.

[9] Sherry X. Sun and Jing Zhao, ”A decomposition-based approach for
service composition with global QoS guarantees”. Inf. Sci. 199, 2012,
pp. 138-153.

[10] N. Alshuqayran, N. Ali and R. Evans, ”A Systematic Mapping Study
in Microservice Architecture”, 9th International Conference on Service-
Oriented Computing and Applications (SOCA), Macau, 2016, pp. 44-51.

[11] Engel, Thomas, Melanie Langermeier, Bernhard Bauer and Alexander
Hofmann. Evaluation of Microservice Architectures: A Metric and Tool-
Based Approach, CAiSE Forum, 2018.

[12] G. Mazlami, J. Cito and P. Leitner, ”Extraction of Microservices from
Monolithic Software Architectures”, in International Conference on Web
Services (ICWS), Honolulu, HI, 2017, pp. 524-529.

[13] J. Gouigoux and D. Tamzalit, ”From Monolith to Microservices: Lessons
Learned on an Industrial Migration to a Web Oriented Architecture”,
in International Conference on Software Architecture Workshops (IC-
SAW), Gothenburg, 2017, pp. 62-65.

[14] S. Hassan, N. Ali and R. Bahsoon, ”Microservice Ambients: An Ar-
chitectural Meta-Modelling Approach for Microservice Granularity”, in
International Conference on Software Architecture (ICSA), Gothenburg,
2017, pp. 1-10.

[15] D. I. Savchenko, G. I. Radchenko and O. Taipale, ”Microservices
validation: Mjolnirr platform case study”, in 38th International Conven-
tion on Information and Communication Technology, Electronics and
Microelectronics (MIPRO), Opatija, 2015, pp. 235-240.

[16] R. Chen, S. Li and Z. Li, ”From Monolith to Microservices: A
Dataflow-Driven Approach” in 24th Asia-Pacific Software Engineering
Conference (APSEC), Nanjing, 2017, pp. 466-475.

[17] Shahbaz Ahmed, Khan Ghayyur, Abdul Razzaq, Saeed Ullah and
Salman Ahmed, ”Matrix Clustering based Migration of System Ap-
plication to Microservices Architecture”, in International Journal of
Advanced Computer Science and Applications (IJACSA), 2018, vol. 9,
no. 1.

[18] P. Di Francesco, P. Lago and I. Malavolta, ”Migrating Towards Microser-
vice Architectures: An Industrial Survey”, in International Conference
on Software Architecture (ICSA), Seattle, WA, 2018, pp. 29-2909.

[19] L. Bass, P. Merson and L. OBrien, ”Quality attributes for Service-
Oriented Architectures”. Department of Defense, Technical Report
September, 2005.

[20] L. Baresi, M. Garriga, A. De Renzis, ”Microservices Identification
Through Interface Analysis, in ”Service-Oriented and Cloud Comput-
ing”, ESOCC, 2017. Lecture Notes in Computer Science, vol 10465.
Springer

[21] J. Lin, L.C. Lin, S. Huang, ”Migrating web applications to clouds
with microservice architectures”,in International Conference on Applied
System Innovation (ICASI), Okinawa, 2016, pp. 1-4.

[22] M. Razavian and P. Lago, ”Understanding SOA migration using a
conceptual framework”, in Journal of Systems Integration”, 2010, pp.
33-43.

[23] R. Kazman, S. G. Woods, and S. J. Carriere. ”Requirements for integrat-
ing software architecture and reengineering models”, in Proceedings of
the Working Conference on Reverse Engineering (WCRE), Washington
DC, 1998, pp. 154163.

[24] B. Kitchenham and S. L. Pfleeger. ”Principles of survey research: part
5: populations and samples”, in ACM SIGSOFT Software Engineering
Notes, 2002, pp. 17-20.

[25] C. Richardson, ”Pattern: Microservice architecture”, 2017. [Online].
Available: http://microservices.io/patterns/microservices.html

[26] E. Evans, ”Structured Design: Fundamentals of a Discipline of Computer
Program and Systems Design”. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2002.

[27] J. Bogner, S. Wagner, A. Zimmermann, ”Automatically measuring the
maintainability of service and microservice-based systems - a literature
review”. in 27th International Workshop on Software Measurement,
Gothenburg, Sweden, 2017, pp. 107-115.

[28] D. Rud, A. Schmietendorf, and R. R. Dumke, ”Product Metrics for
Service-Oriented Infrastructures”, in IWSM/MetriKon, 2006.

[29] J. Bogner, S. Wagner, A. Zimmermann, ”Towards a practical maintain-
ability quality model for service and microservice-based systems”, in
Proceedings of the 11th European Conference on Software Architecture:
Companion Proceedings, ECSA, 2017, pp. 195198.

[30] U. Zdun, E. Navarro, F. Leymann, ”Ensuring and Assessing Architecture
Conformance to Microservice Decomposition Patterns”, in ICSOC,
2017, pp. 411-429.

[31] M. Fowler, ”Bounded Context” 15 January 2014. [Online]. Available:
https://martinfowler.com/bliki/BoundedContext.html

[32] ”ApacheBench (ab)”. [Online]. Available:
https://httpd.apache.org/docs/2.4/programs/ab.html

[33] ”Netflix: ChaosMonkey”. [Online]. Available:
https://github.com/Netflix/chaosmonkey

[34] E. Evans, ”Domain-Driven Design: Tacking Complexity in the Heart
of Software”, published by Addison-Wesley Longman Publishing Co.,
Boston, USA, 2004.


