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Abstract—Our society is increasingly solving complex problems
through the use of graph processing. Existing graph process-
ing systems focus on performance, which allows addressing
ever-larger and more complex problems. They also require
uncommon expertise to properly deploy and utilize. To make
graph processing generally accessible—to small and medium
enterprises and institutions, to common research groups, to
individuals—, in this work we design and implement the
Graphless graph-processing system.

Graphless is based on the serverless paradigm, which
proposes to simplify computing by letting developers only
focus on small, stateless functions, which are deployed and
managed automatically. We address with Graphless the key
challenge of combining the stateless functions assumed by
serverless computing with the (opposite) data-intensive nature
of graph processing. Graphless tackles this challenge through
an architectural approach that allows it to deploy with push or
with pull operation, and a collection of backend services, such
as an orchestrator and a memory-as-a-service component.

We implement Graphless and conduct with it real-world
experiments using Amazon Lambda for cloud-based serverless
resources. Using the LDBC Graphalytics benchmark, we ana-
lyze Graphless, and compare its performance and operational
cost with the graph-processing systems Apache Giraph (big
data domain) and GraphMat (HPC). Overall, we show evidence
Graphless provides performance and cost-efficiency similar
to Giraph, for algorithms that can benefit from fine-grained
elasticity, and lower than GraphMat, but is architecturally
easier to deploy, and provides both push and pull operation.

1. Introduction

Graphs are useful for extracting meaning and expressing
data connectedness at arbitrarily deep levels, streamlining
the process of finding known and hidden relationships to
solve complex societal problems [1]l, [2], [3]. So far, the
graph processing community has focused on running graph
algorithms on tightly-coupled, high-end infrastructure, using
complex parallel [4] or distributed [5]], [6] software. These
approaches promise high performance, but effectively lock
out the small and medium organizations that cannot afford
investing in high-end infrastructure, or do not have the
knowledge to operate complex graph-processing software. In
the past few years, similar issues have led to the emergence
of the serverless computing paradigm. Serverless systems
require from the developer only simple, small functions, and

a specification of how they interconnect; the operational con-
cerns are abstracted away [7]]. This gives serverless systems
ease-of-use, fine-grained scalability, and, when using cloud
resources, fine-grained pay-per-use billing. However, the
serverless paradigm posits that functions are stateless, which
goes contrary to the big data nature of graph processing.
Toward a serverless graph-processing system, our work is
the first to ask and to address the research question How fo
combine serverless and graph processing into a serverless
graph-processing system?

Graph processing enables a wide array of applications.
Use cases include social network analysis [1f, [8]], ma-
chine learning [9]], data mining [10]], bioinformatics [2],
telecommunications [11]], [12], fintech [13]], and fraud detec-
tion [3]]. Graph algorithms are generally iterative, data- and
communication-intensive, and exhibit unpredictable compu-
tation and data-access patterns, leading to poor data-locality
properties [[14]. To address these challenges, modern graph
processing runs in complex environments, such as parallel
HPC systems, distributed commodity clusters, and elastic
(commercial) clouds. Many large-scale graph processing
platforms exist [15]], [16], for big data processing, such
as Apache Giraph [5]] and GraphX [6], and for the HPC
community, such as GraphMat [4].

The design, development, deployment, and management
of the infrastructure and platform for graph processing,
in short, the complex processing ecosystem [17], raises
important challenges. First, managing such clusters and
the processing system itself is non-trivial, requires expert
knowledge, and incurs significant costs. Second, distributed
graph processing systems generally run on a fixed number of
compute nodes, making such systems brittle and unable to
respond to changes in the workload by scaling-in or -out; the
systems are either over- or under-provisioned. In practice,
under-provisioning leads either to crashing or thrashing,
and over-provisioning leads to resource waste due to the
irregularity of graph processing workloads [[18]].

The commonly held view that large-scale graphs are
only a problem for large organizations is inaccurate [19].
Therefore, leveraging cost-efficient deployments for graph-
processing is an important problem. Recently, serverless
computing has emerged as a paradigm for easy-to-use, cost-
efficient deployment. Serverless is based on the FaaS layer
of abstraction in cloud computing [7]], aiming to separate
operational from business concerns through full automation
of provisioning and server management. Serverless shifts the
operational responsibility to the cloud provider, is pay-per-



use billed in millisecond increments, and scales up and down
automatically with fine granularity. This promises to allow
developers to focus only on the software they are building.
However, to achieve its promise of full automation, server-
less posits that functions should be small, short-lived, and
stateless. This contrasts with the data-related requirements
of graph processing and poses a key conceptual challenge
to serverless graph processing. In this work, we address
this challenge, and the research question, with a two-fold
contribution:

1) We design the Graphless serverless graph-
processing system (Section [2)). Graphless provides
the key components for automating the operation
of graph processing systems, which it combines
to support two operational architectures for push-
and for pull-based serverless graph processing.

2)  We conduct real-world experiments with a pro-
totype implementation of Graphless (Section H).
We compare Graphless with two leading graph-
processing platforms, Giraph and GraphMat.

2. Graphless Design

We propose in this section the design of the Graphless
serverless graph-processing system.

2.1. Requirements

We identify five key requirements for a serverless graph-
processing system:

R1 Target algorithms and graphs. The system must
support a broad range of applications from a variety of
domains. Similarly to state-of-the-art graph-processing sys-
tems, the system must support the broad class of iterative
graph algorithms, and graphs that are directed or undirected,
weighted or unweighted, and can mutate at runtime.

R2 Fine-grained elasticity. To process efficiently the
highly irregular workloads of graph processing, the system
must be elastic [[18], that is, be able to scale-up and -down
seamlessly with the graph workload. Moreover, to avoid
excessive overprovisioning, elasticity should be fine-grained.

R3 Fast, scalable, low-latency remote memory. Un-
like the computation nodes used by other graph processing
systems, FaaS platforms are generally stateless. To access
graph data, they require a (remote) memory service with
high throughput, low latency, and high elasticity.

R4 Platform independence. Users should be able to
freely choose where to deploy the system based on their
own requirements, such as performance and cost. Therefore,
the system must be independent of its environment, whether
it is a public cloud or an on-premises infrastructure.

RS High usability and automated resource management.
To satisfy a large and diverse user base, the system must
require from its users only minimal and common knowledge
of resource management. In particular, system deployment
should be fully automated.

2.2. Architecture

Graphless is based on a serverless architecture, a form
of event-driven architecture in which components are either
fully-managed services or ephemeral containers that exe-
cute user-defined code and are triggered by events (state
changes). It uses the Pregel computation model [20], a
form of the Bulk Synchronous Parallel model [21]], as its
execution model.

To meet R4, the design of the architecture is modular,
with each component exposing a platform-agnostic API. The
memory, compute, storage, and queuing services can have
their implementations swapped with custom built compo-
nents or with managed services.

Requirement R5 is achieved through the serverless com-
pute, managed distributed Redis (Elasticacheﬂ), and the
easy-to-use programming model. Unlike other graph pro-
cessing systems, deploying Graphless is simple. During our
experiments, we had to migrate the system from one region
of the AWS Cloud to another. The entire procedure took
just minutes to complete.

2.3. Front-End

The user interfaces with the system through the front-
end. This part exposes the functionality required for the user
to implement arbitrary graph algorithms, through a high-
level programming abstraction.

Programming Model Graphless provides a simple
method of implementing graph algorithms through a vertex-
centric high-level programming abstraction. In the vertex-
centric paradigm, processing happens through parallel exe-
cutions of a user-defined function for each individual vertex.
Communication and data partitioning are transparent to the
user. To implement a graph algorithm, users write a single
function, which is executed for each active vertex; a vertex
can vote to become inactive at any time during execution.
Computation ends when all the vertices become inactive.
The function has access to an API that exposes functionality
for communication, update, aggregation, topology mutation,
and execution termination.

API The user is required to implement the Compute()
function, which will be executed for each active vertex in
every iteration. Vertices communicate with each other via
message-passing. Through the API, it is possible to retrieve
and modify the edges and the value of the vertex and send
messages to other vertices. The API allows users to create
aggregators, that can hold global state for the duration of a
superstep. Aggregators can be used to compute minimums
and maximums, sum values, etc.

2.4. Back-End

The back-end is the part of the system that manages
all the phases required to execute user-defined applications.

1. |https://aws.amazon.com/elasticache/


https://aws.amazon.com/elasticache/

Among its tasks are communication and superstep synchro-
nization, data loading and partitioning, fault-tolerance, and
function invocation.

Loader. The loader is responsible for the initialization
phase of a graph computation. It parses the execution pa-
rameters and retrieves the input graphs from stable storage,
passing them on to the memory engine; communication with
the storage system takes place through a platform-agnostic
API. The loader employs a fan-out pattern, splitting the work
across multiple invocations of itself.

Orchestrator. This component is mainly responsible for
data partitioning and synchronization. Once the graph is
loaded in the memory engine, the orchestrator retrieves the
metadata through the memory engine API, determines the
number of workers that need to be launched in parallel
based on configuration parameters, and partitions the data
accordingly. The orchestrator ensures that the computation
is evenly spread, so that all workers can finish processing
their partition within the time constraints set by the FaaS
platform. It initiates each superstep and determines when
the processing has finished; it is also responsible for parsing
and uploading the results to stable storage.

Function Manager. Each invoked worker function has
a Function Manager that handles its execution. This com-
ponent retrieves the vertex partition and messages assigned
to a worker and makes them available to the user-defined
function. The Function Manager also handles communica-
tion, vertex halting, and includes termination detection to
determine when a superstep has ended.

Memory Engine To meet R3, we design the memory
engine. It acts as an abstraction over a distributed set of
Redis instances. In line with serverless architectures, we see
the memory engine as a managed service - Memory-as-a-
Service (MaaS). Through its API, vertices and messages can
be stored, deleted, or updated, along with metadata required
to keep track of state, such as the number of active vertices.
Every Redis instance gets a partition of the data through
sharding. Each new key is assigned to a partition using a
consistent hashing function. Redis is an in-memory key-
value store with sub-millisecond response times; it meets
graph processing requirements, such as high-throughput and
low-latency [22]. Amazon S3, a blob storage service, cannot
meet the latency requirement and only supports eventual
consistency. DynamoDBE], a scalable NoSQL database, is
prohibitively expensive for bursty workloads, such as graph
processing. Moreover, it takes minutes to scale-up or -down,
therefore it lacks the degree of elasticity that is required.

2.5. Al. Push-Based Architecture

In this section we discuss the design and implementation
of a push-based architecture, depicted in Figure [I]

This architecture is push-based because there is a cen-
tral orchestrator component that pushes to each worker the
metadata for specific ranges of vertices that the worker must
process. The orchestrator is the one responsible for starting

2. |https://aws.amazon.com/dynamodb/
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Figure 1. Al. Push-based architecture.

new supersteps, partitioning the data, and detecting when the
procesing has finished; the number of workers is determined
based on the size of the data partition.

State persistence and communication between workers
is done through the MaaS. The function manager provides
all the functionality required for loading the partition data,
message sending, and vertex updating and inactivation; it
communicates with the MaaS whenever data needs to be
sent or received. It also detects the end of a superstep and
invokes the orchestrator function.

This architecture is pure FaaS, each worker function only
runs for as long as it takes to process its payload. Fault
tolerance is implemented in the form of function retries. If
a worker function fails, it is simply restarted and retrieves
its partition from the MaaS.

2.6. A2. Pull-Based Architecture

In this section we discuss the design and implementation
of a pull-based architecture, depicted in Figure

Instead of the orchestrator directly passing the partition
metadata to the workers, it adds tasks for each worker in
a queue. The invoked workers then pull the tasks from the
queue along with the corresponding data from the MaaS.

In this architecture, along with data partitioning there is
also compute partitioning. Each worker runs for the duration
of the entire superstep; it is necessary to determine the
optimal number of workers so that computation for each
worker does not last longer than the function duration limit.
Data partitioning consists of selecting an appropriate number
of tasks that a vertex can pull from the queue at once
so that computation is balanced across the workers. This
architecture is no longer pure FaaS, since each function runs
for the duration of a superstep.
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3. Experimental Setup

This section is focused on the experimental setup used to
evaluate Graphless. The goals include validating the outputs
produced by the system, testing its scalability, its cost-
effectiveness, and whether the serverless paradigm in its
current form is sufficient to produce a high performance,
efficient, and easy-to-use graph processing system.

Running and Validation. We select LDBC Grapha-
Iytics, an industry-grade, state-of-the-art graph processing
benchmark [23] to evaluate the performance of Graphless.
The outputs of running the algorithms with Graphless are
validated against trusted results. Graphalytics also retrieves
metrics, such as makespan and processing time.

Selected Graph Algorithms and Datasets. The algo-
rithms cover a broad range of application classes, such as
statistics, traversal, components, and distance calculation:
Breadth-First Search (BFS), Weakly Connected Compo-
nents (WCC), PageRank (PR), Community Detection by La-
bel Propagation (CDLP), and Single-Source Shortest Paths
(SSSP). We run these algorithms on the largest real-world
weighted graph from the LDBC Graphalytics datasets. The
graph is obtained from the gaming community and consists
of 61,170 vertices and 50,870,313 edges.

Environment. The Graphless prototype runs on Amazon
Cloud, using AWS Lambda as the FaaS platform providing
the compute, EC2 virtual machines to run Redis instances
for the memory engine, and S3 as stable storage. One of the
objectives of this system is to automate resource manage-
ment as much as possible; for experimentation purposes, we
run Redis instances on manually managed EC2 instances.
However, Amazon provides Elasticache, a managed Redis
service that can be used as a drop-in replacement. Graphless

is implemented in G(ﬂ a compiled, type-safe, garbage-
collected programming language.

We chose AWS Lambda as the compute building block
because it is the most mature serverless platform currently
available. Functions are invoked asynchronously, using the
Invoke action from the Lambda API with the InvocationType
parameter set to Event. Lambda has a set of resource limits,
which can be seen in Table [[l CPU and network bandwidth
are proportionally allocated with memory.

TABLE 1. AWS LAMBDA RESOURCE LIMITS.

Resource Limits

Memory 128MB - 3008MB (64MB increments)

CPU (2 * m) / 3328MB, where m is the memory [24]
Temporary storage 512MB

File descriptors 1024

Execution duration limit ~ 900s

The experiments involving Giraph and GraphMat are
performed on Google Cloud using a 16-node configuration.
Each node has 16 vCPUs and 60 GB of memory. A vCPU
is a hardware hyper-thread of a 2.3 Ghz Intel Xeon E5 v3.

The main metrics used to evaluate the performance of
Graphless are the following:

Processing Time. This metric represents the time re-
quired to execute one run with an algorithm, without in-
cluding any platform-specific overhead, such as resource
allocation, graph preprocessing, and loading the dataset or
uploading the results to stable storage.

Cost of Execution. One of the objectives of our system
is to be accessible to a broad variety of users, including
individuals, such as researchers and small and medium
enterprises. Cost is a major pain point for any type of
user, but for those with limited capital, a high cost prohibits
them from using a system entirely. For Graphless, the cost
is represented by the sum of the cost incurred by AWS
Lambda, as billed by the providelﬂ and the cost incurred
for provisioning the Redis storage VMs.

4. Experimental Results

This section is focused on the experimental evaluation
of the Graphless prototype. The experimental setup is the
one described in Section 3.

Main Findings:

1) Graphless achieves fine-grained elasticity.

2) Graphless is network bound; communication ac-
counts for the majority of the execution time for
all algorithms.

3) Graphless is cost-effective for algorithms that are
not communication-intensive and can benefit from
fine-grained elasticity.

3. https://golang.org/
4. https://aws.amazon.com/lambda/pricing/
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4.1. Scalability Experiments

We examine how the components of the system, as well
as the system as a whole, scale with load.

Memory Scalability. We assess the scalability of the
memory engine by using a fixed number of one thousand
maximum concurrent functions and varying the number of
Redis instances that the memory engine can make use of.

This experiment shows that the system is not compute-
bound, but is network-bound at this scale. The number of
functions does not change, but we see clear improvements
when adding new memory instances. We observe from
Figure [3 that processing time improves with each addition
of new instances. Communication between vertices seems
to be the source of the bottleneck. This is confirmed by the
fact that BFS, the least communication-intensive algorithm
shows the least improvement; CDLP and PR, which are the
most communication-intensive algorithms, show the most
improvement. Processing time improvement is up to 41%
for CDLP when moving from four to sixteen instances.
The other algorithms experience improvements ranging from
21% to 36%.
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Figure 3. Memory engine scalability.
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Figure 4. Communication impact on processing time using 12 Redis
instances.

Figure [ provides further insight into the problem. Ex-
cluding BFS, communication time is more than 90% of the

aggregated execution time for the functions, the majority of
which is message sending. Results were similar for all other
runs, regardless of the number of instances. Since functions
are stateless and cannot communicate directly with each
other, the high number of messages for algorithms such as
PR and CDLP becomes a problem. For example, during the
execution of PR, each vertex sends messages along each
of its neighbouring edge and all vertices are active during
every superstep.

Compute Scalability. We assess the compute scalability
of the system with a fixed number of Redis instances, using
the setup that provided the best results from the memory
scalability experiment: 16 Redis instances, each pinned to
a physical CPU core. We vary the maximum number of
concurrent functions for each separate execution of the five
algorithms.

Maximum number of concurrent functions
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Figure 5. Compute scalability.

The results of the experiment confirm the findings of
the memory engine scalability experiment: the system is
not compute-bound, but is network-bound. From Figure
we determine that the best run used a maximum number
of 400 concurrent functions. Further increasing the number
of functions leads to increased contention when attempting
to access the memory engine, slowing down the entire
execution. This is evidenced by the fact that 200 functions
perform better on almost all algorithms (excluding BFS)
when compared to 600 concurrent functions.

To meet R2 from Section 2, the system needs the ability
to seamlessly scale-up or -down with the unpredictable
graph workloads. Our experiments show that fine grained
elasticity is achieved. The execution patterns of each algo-
rithm are easily identifiable in Figure [6] where we can see
the number of workers constantly adjusting to match the
workload. A sharp rise in the number of workers marks the
start of a new superstep, as the remaining active vertices are
partitioned to a fresh set of workers. PR exhibits a similar
pattern to CDLP; for both algorithms, all vertices are ac-
tive during each superstep, therefore utilizing the maximum
number of functions. The number of workers drops sharply
as the computation finishes for each vertex. For SSSP, it is
clearly observable when it approaches convergence, as the
worker invocation pattern becomes increasingly smaller.

These worker invocation patterns help explain why al-
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Figure 6. Fine-grained elasticity during execution of algorithms.

gorithms such as PR and CDLP have significantly higher
processing times on our system than BFS and WCC. They
require a higher number of supersteps to complete and
make use of the maximum amount of workers, since every
vertex is active during each superstep. The communication
overhead is much higher than for BFS and WCC, straining
our network-bound system.

4.2. Comparison of the Architectures

In this section we compare the two implemented archi-
tectures of the Graphless prototype, one with a push-based
model and the other with a pull-based model. We com-
pare running each architecture with the best configuration
determined from the previous experiments: 400 concurrent
functions and 16 Redis instances.
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Figure 7. Processing time comparison of a push-based and a pull-based
architecture.

For our dataset, the push-based architecture performs
better with all five algorithms. The pull-based architecture
ends up being slower due to the extra overhead added by
inserting and retrieving tasks from the queue service.
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Figure 8. Processing cost comparison of a push-based and a pull-based
architecture.

When it comes to cost, the push-based architecture is
cheaper for BFS, SSSP, and WCC. Surprisingly, although
the pull-based architecture is slower for all algorithms, it is
actually more cost-effective for PR and CDLP. While the
processing time is higher than the push-based architecture,
the aggregated function execution time is lower, therefore
the processing cost is also lower. The higher processing time
is caused by the orchestrator taking longer to execute; every
superstep it has to push tasks in the queue service for all
vertices.

4.3. Comparison with Other Graph Processing Sys-
tems

In this section we compare Graphless with two other
graph processing systems, Apache Giraph and GraphMat.
Experiments are run with Giraph and GraphMat deployed
on 16 nodes.

Algorithms
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Figure 9. Makespan comparison for three graph processing platforms:
Giraph, GraphMat, and Graphless.

The experiments show that Graphless is orders of mag-
nitude slower than the other systems for most algorithms.
The best result is 25% slower than Giraph for BFS. Com-
pute power is not a problem with the underlying serverless



platform, which is able to spin up thousands of concurrent
workers on demand. As shown in the previous experi-
ments, communication is the issue, taking up the majority
of the execution time. This is especially a problem for
communication-intensive algorithms, such as PR and CDLP.

Even though GraphMat is much faster than both Giraph
and Graphless, it performs extensive preprocessing of the
dataset before computation. It was observed that prepro-
cessing time often dominates the total execution time of
an algorithm [25] and that processing time is often just a
fraction of the makespan [23].

In the case of Graphless, the makespan is equal to the
processing time. Unlike other graph processing systems,
where partitioning is usually only done once in the begin-
ning of an execution, repartitioning has to be done every
superstep due to the statelessness of the workers.
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Figure 10. Processing cost comparison for three graph processing platforms:
Giraph, GraphMat, and Graphless.
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Figure [10| depicts the cost of running all five algorithms
with the three graph processing systems. Graphless is an
order of magnitude cheaper for BFS than Giraph; it is also
cheaper than Giraph for WCC. Graphless has a significantly
higher processing cost than Giraph or GraphX when running
communication-intensive algorithms, such as PR and CDLP.
GraphMat is the cheapest to run for all algorithms when tak-
ing makespan into account. However, as previously stated, it
also spends time preprocessing the dataset; this would also
be billed when running GraphMat on virtual machines in
the cloud.

4.4. Discussion

The experiments prove that Graphless can be cost-
effective when running algorithms with lighter communi-
cation requirements, such as BFS. Provided that the com-
munication bottleneck is overcome, Graphless can be cost-
effective for all five algorithms; computation is cheap if
we are not waiting on communication and the majority
of the cost comes from the memory service. Recently,
researchers have started to develop elastic storage systems
for serverless data analytics [26]. Using such a system,
serverless graph processing systems can benefit from fully
automated resource management, therefore reducing cost.

Decreasing the number of sent messages between vertices
would significantly improve performance and cost for all
algorithms. In its current state, the system is not compet-
itive for communication-intensive algorithms when com-
pared to existing graph processing systems, such as Giraph
and GraphMat. Network variability is a big issue, since
performance will vary greatly between different functions,
leading to imbalance. In worst-case scenarios, bandwidth for
a Lambda function can drop to as low as 30Mbps [24].

5. Related Work

In this section, we contrast our contribution with related
work. Overall, ours is the first work combining graph pro-
cessing with the serverless paradigm.

Elastic graph processing: Closest to our work, the
JoyGraph elastic graph-processing system [[18]] uses tra-
ditional VM-based infrastructure. However, the JoyGraph
process of starting-up and stopping VMs adds significant
performance and cost overhead, and requires stopping com-
putation and repartitioning data. In contrast, Graphless offers
much finer-grained scalability, due to serverless computing,
and provides a memory-as-a-service component for data
persistence.

Serverless processing: Also close to our work are the
pioneering studies of serverless computing applied to pro-
cessing in general, and in particular to big data. PyWren [27]]
is a serverless (big) data processing system, which can
implement MapReduce-like jobs. However, PyWren offers
no support for graph processing: it cannot support iterative
computation and loading the Python runtime is too slow for
short-lived functions. Similarly, Flint [28] and a streaming
approach [29] are serverless data-processing platforms with
useful features, but do not support graph processing.

Performance for serverless storage and communica-
tion: This serverless performance bottleneck is starting to
be addressed by the community. Pocket [26] is an elastic
serverless storage system built on the premise that using
cloud-storage services as remote memory for serverless data
analytics cannot provide sufficient performance. Similarly,
[30] analyses the suitability of using serverless computing
for network intensive applications.

6. Conclusion and Future Work

To make available graph processing to a wider audience
than the current specialized tools do, in this work we have
focused on leveraging the emerging serverless paradigm for
graph processing.

We have proposed Graphless, the first serverless graph-
processing system. Graphless proposes a set of backend
components that automate the deployment and operation
of graph processing, and an architectural approach that
supports both push and pull operations. Among the key
challenges, Graphless addresses the need to reconcile the
assumption of stateless functions that serverless makes with
the need to access and store data that is typical of graph



processing. Graphless achieves this through a dedicated
memory-as-a-service component. Overall, the serverless na-
ture of the Graphless system ensures automated resource
management, fine-grained scalability, and, when deployed
on FaaS cloud platforms such as Amazon Lambda, fine-
grained pay-per-use billing model.

We prototype Graphless and evaluate it through real-
world experiments using LDBC Graphalytics. Our results
show that the system is not compute-bound, but network-
bound, with the majority of the execution time being spent
on communication. When compared to big data platforms,
such as Apache Giraph, the system is similar in performance
and cost-effective for algorithms that can benefit from fine-
grained elasticity. Expectedly, Graphless is not competitive
with HPC platforms, such as GraphMat.

For the future, we plan to continue our architectural work
through exploration with more diverse architectures. We
will also focus on performance engineering for individual
components, such as graph-processing-aware elastic storage
and communication—these are key to making Graphless
competitive also with HPC platforms.
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