
MemEFS: an Elastic In-Memory Runtime File
System for eScience Applications

Alexandru Uta, Andreea Sandu, Stefania Costache, Thilo Kielmann
Dept. of Computer Science, VU University Amsterdam, The Netherlands

a.uta@vu.nl, a.sandu@vu.nl, s.v.costache@vu.nl, thilo.kielmann@vu.nl

Abstract—Data-intensive scientific workflows exhibit inter-task
dependencies that generate file-based communication schemes. In
such scenarios, traditional disk-based storage systems often limit
overall application performance and scalability. To overcome the
storage bottleneck, in-memory runtime distributed file systems
speed up application I/O. Such systems are deployed statically
onto a fixed number of compute nodes and act as a distributed,
fast I/O cache for the runtime generated data. Such static
deployment schemes have two major drawbacks. First, the user is
faced with the sometimes difficult task of estimating the size of the
generated data, as the application would fail otherwise. Second,
because applications exhibit significant variability of the data
footprint and of the achieved parallelism during their runtime,
this deployment scheme also leads to severe resource under-
utilization. To address these limitations, we present MemEFS,
an elastic in-memory runtime distributed file system. MemEFS
is able to scale elastically, based on application storage demands,
by acquiring or releasing resources when needed. Our evalu-
ation shows that, while generating modest runtime overheads,
MemEFS is able to increase the resource utilization efficiency by
up to 65%.

I. INTRODUCTION

An important direction of the current eScience research
focuses on efficiently running scientific workflows. These com-
putations are usually composed of many data-intensive tasks
and span over multiple domains, ranging from data analytics
to domain-specific scientific computations, e.g., astronomy [1]
or bioinformatics [2]. Such applications exhibit inter-task
dependencies expressed by means of files (i.e. the output
of one task is the input of another). Opposed to traditional
message passing mechanisms [3], this communication scheme
requires a shared, or distributed, file system. However, data-
intensive scientific workflows generate large data amounts,
which cannot be efficiently handled by the traditionally used
disk-based distributed file systems, thus leading to a limited
application performance and scalability.

To alleviate the storage bottleneck, state-of-the-art [4],
[5] suggests using in-memory runtime distributed file sys-
tems. Currently, such systems either use a locality-based
approach [4] or are locality agnostic [6], [5]. These solutions
expose the compute nodes’ memories as a fast, unified, dis-
tributed cache, that optimizes accesses to runtime generated
data. Even though performance is an important aspect when
running scientific workflows, the applicability and efficiency of
in-memory runtime distributed file systems remains limited as
they are statically deployed onto a fixed number of compute
nodes.

We believe that an elastic scheme that allocates or deal-
locates resources based on application demands offers more
flexibility and a larger optimization space to the users of such
systems. A direct implication of an elastic in-memory storage
is that the user can rely on the system to determine the
(near-)optimal number of nodes that an application needs for
storing its data at runtime. In the case of a static deployment,
the user would be faced with the sometimes difficult task
of estimating the storage demands of the application before
starting the application. An under-estimation would lead to
poor performance (i.e. as the system would start swapping),
or even to crashing, while an over-estimation would lead to
poor resource utilization.

Furthermore, scientific workflows exhibit significant vari-
ability of the data footprint and of the achieved parallelism.
The former is determined by two aspects: (i) data-intensive
parallel stages generate large amounts of data; (ii) runtime
generated data can be discarded when it is no longer needed.
The latter is a result of the mix of large parallel stages with
sequential synchronization points, e.g., data aggregation, data
partitioning stages. Under such conditions, a static deployment
scheme needs to overprovision resources to accommodate the
peak storage demands of the application. This leads to poor
resource utilization as nodes cannot be added or removed on-
demand, during runtime. In shared clusters, such behavior
translates to longer queueing times for users and inefficient
energy consumption, assuming machines that are no longer
used could be powered off.

In this work, we introduce MemEFS, a locality-agnostic
in-memory elastic storage system that builds on our previous
research [6], [5]. In contrast to static deployment schemes,
MemEFS is able to scale dynamically, at runtime, based on
the application storage demands. Thus, MemEFS significantly
reduces resource inefficiencies generated by overprovisioning
for peak storage demands. The contributions of this paper are
two-fold:
• We propose the design of MemEFS, an elastic in-memory

storage system. MemEFS distributes the data uniformly
across nodes through the use of a two-layer hashing
scheme, while storing data in a key-value store [7].
MemEFS scales elastically during runtime while main-
taining a good load balance for both storage and network
traffic.

• We evaluate MemEFS with a variety of real-world and
synthetic scientific workflows. We show the efficiency

of our design through a set of elastic scaling policies
based on application storage demand. Our results show
that MemEFS improves resource utilization (by up to
65% in most situations) with modest performance impact.
Furthermore, our policies allow the user to trade off
resource efficiency for performance.

This paper is organized as follows. Section 2 presents the
background of our work, while Section 3 introduces the design
of MemEFS. Section 4 describes the evaluation results and
Section 5 discusses related work. Finally, Section 6 concludes
the paper.

II. BACKGROUND

In our previous work [6], [5] we designed MemFS, an in-
memory distributed file system for storing the intermediate
data of scientific workflows. MemFS is deployed on the
nodes on which the application is running and spreads the
application data uniformly across these nodes. We showed that,
since remote operations have become faster, due to increasing
network bandwidth and DRAM capacities, a locality-agnostic
approach achieves better performance for scientific workflows
than state of the art locality-based file systems [6].

MemFS improves the performance of scientific workflows
through two attractive features: (i) it achieves a good load
balance for both storage and network traffic, thus avoiding
scalability bottlenecks when running data aggregation and
partitioning stages; (ii) and it maximizes the achieved band-
width and throughput for reading and writing operations.
MemFS balances its load among the nodes through the use
of a key-value store. In MemFS, files are striped and each
stripe is associated with a key. The node which stores a file
stripe is selected by hashing the stripe’s key. MemFS uses a
modulo hashing scheme, which assigns each stripe to a node
in a logical ring, guaranteeing a balanced data distribution.
MemFS’s file striping mechanism also allows it to improve
the read and write throughput by transferring data via parallel
streams from multiple nodes.

MemFS is designed to run on tightly coupled, reliable com-
pute resources, such as clusters, supercomputers, or clouds.
Hence, all-to-all connectivity is ensured and, before runtime,
each node has membership information about all other nodes.
This minimizes latency by enabling O(1) file look-up and
alleviating the need of additional routing. In the case of
Distributed Hash Tables (DHTs), which are designed for
environments where nodes join and leave the system at very
high rates, such a small complexity is not possible. As in such
environments it would be too expensive for every node to keep
a full view of the network, only a partial view is used. Thus,
nodes use routing tables to be able to direct queries, leading
to a complexity of O(log n) for look-up operations.

MemFS’s design is based on three components: (1) a FUSE
[8] layer that serves as a POSIX interface to applications and
which handles the file striping mechanism; (2) the Libmem-
cached [9] hashing protocol which determines in O(1) steps
which node holds a certain file stripe; and (3) Memcached
[10], a fast, in-memory key-value data store.

0

200

400

600

800

1000

1200

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

M
e

m
o

ry
 (

G
B

)

Time (s)

Used Memory

Allocated Memory

Fig. 1. The in-memory storage demand of a scientific workflow during
its runtime. Note the difference between the used storage and the allocated
amount to satisfy the peak demand.

A. Elasticity Requirements

Current in-memory file systems, like MemFS, lack support
for scaling their number of nodes to application storage needs.
Nevertheless, scientific workflows often have varying storage
demands during their runtime. Let us take for example an
astronomy workflow, Montage [1], which builds a mosaic from
a set of galaxy images. Montage is composed of a series
of stages, each generating different data amounts. Some of
Montage’s stages are parallel, e.g., composed of thousands of
tasks, while others are sequential. Moreover, in Montage, as
most of the stages depend only of the data from the previous
stage, a part of the runtime data can be deleted by the workflow
manager [11], to optimize the total data storage used by the
workflow.

Figure 1 describes the variations in used data storage during
a run of Montage using MemFS (we discard the data that is no
longer needed at the end of each stage). If a user would have
to run Montage on a static number of nodes, she would have to
provision for the peak memory utilization (depicted in Figure
with red). Not only she will have to know this maximum
utilization before starting Montage, but also, due to varying
parallelism levels of Montage stages, resources will be left
unused while other users might have applications waiting in
the cluster’s queue.

Adding elasticity to a file system like MemFS involves
designing new data partitioning and load balancing mecha-
nisms. Load balancing after a reconfiguration implies moving
data among nodes. As previously shown with MemFS, load
balancing can be efficiently achieved by striping files and using
a key-value store to store the file stripes. However, adding
or removing nodes leads to changing the hash function and
thus it invalidates the assignment of stripe keys to nodes. To
maintain the storage balancing properties, the keys would need
to be rehashed and data would need to be migrated among
nodes. However, the movement of data during load balancing
degrades the application performance, as application I/O has to
be postponed until the reconfiguration has finished. To reduce
the application performance degradation, the amount of data
migrated among nodes needs to be minimized.

In this paper we leverage the ideas behind MemFS to

design MemEFS, an elastic in-memory distributed file system.
MemEFS improves MemFS through: (i) efficient mechanisms
to store and re-distribute the data among nodes when nodes are
added or removed; (ii) and elastic scaling policies to adapt the
number of nodes to variations in application storage demand.

III. MEMEFS DESIGN AND IMPLEMENTATION

Figure 2 gives an overview of MemEFS. Our elastic in-
memory distributed file system consists of worker nodes and a
Central Manager that gathers worker node statistics for taking
reconfiguration decisions and orchestrates the reconfigurations.
The worker nodes run a File System Client, a Local Manager
and the application processes. The Local Manager monitors the
node’s resource statistics, e.g., memory utilization, and sends
it to the Central Manager. The Central Manager could run on a
separate node, but it can also reside on a worker node without
affecting the worker’s performance.

As previously explained, to achieve load balancing, when
new nodes are added, MemEFS needs to move data. To
minimize the data movement, MemEFS uses a consistent
hashing scheme [12]. This guarantees that in a system that
holds K objects on N nodes, when a node is added, at most
O(K/N) objects need to be rehashed.

MemEFS implements consistent hashing through a two-
layer hashing scheme that maps file stripes to partitions and
then partitions to nodes. We believe it is preferable to organize
data in a manner that permits moving small numbers of large
objects (partitions) rather than large numbers of small objects
(file stripes). Better performance is achieved when transferring
larger objects since fewer data transfers are needed, and hence
we minimize the latency and maximize the bandwidth. With
this argument in mind, each node holds multiple partitions,
such that, when reconfiguring the file system, we migrate
partitions, thus avoiding rehashing the file stripes.

Throughout the application runtime the number of partitions
is constant. The total number of partitions sets the upper bound
on the number of nodes to which the elastic distributed file
system can scale out to. The size of each partition is limited
by the total amount of memory the nodes have. Thus, when
running on a small number of nodes with many partitions,
the partition size will be small. When scaling out to a larger
number of nodes, a subset of the partitions will be migrated
to the newly added nodes, allowing all the partitions to grow
in size.

A. Two-Layer Hashing Scheme

To store file stripes, MemEFS uses the two layer hashing
scheme as follows. The mapping of stripes to partitions is
achieved using the xxhash [13] algorithm. This algorithm
hashes an input string to a 64 bit number. We have chosen this
non-cryptographic algorithm because it is optimized for 64-bit
CPUs, leveraging up to 13GB/s throughput [13], outperform-
ing other hashing algorithms like SHA1 [14] or MD5 [15] by
two orders of magnitude. This is important for MemEFS since
a fast hashing scheme reduces the latency of looking up a file
stripe. To determine the mapping of a stripe to a partition, we

Fig. 2. Architecture of MemEFS.

hash the file path and the stripe number, obtaining a 64 bit
integer. We then use a modulo (circular) scheme to determine
which partition holds the file stripe.

The mapping of partitions to nodes is kept in a table, called
the Partition-Node table. This table is stored on each node and
it is updated by the Central manager at each reconfiguration.
To read or write a file stripe, MemEFS first determines the id
of the partition responsible for the file stripe, then the node
responsible for the partition, and then the query is sent directly
to that node. Thus, MemEFS achieves O(1) look-up for storing
or retrieving file stripes.

B. Load Balancing

To compute the number of partitions each node stores after
each reconfiguration, MemEFS adapts an algorithm proposed
in Y0 [16]. Y0 improves the Chord [17] DHT to achieve good
load balance, even with nodes that are heterogeneous in terms
of storage. The authors have shown that the load imbalance
in Y0 is a constant factor of at most 3.6, while DHTs usually
generate a load imbalance in the order of O(logN).

The core idea of Y0 is as follows. Considering there are
n heterogeneous nodes, to achieve load balance, each node v
should own a fair share share(v) of the storage capacity equal
to:

share(v) =
fv
cv/n

(1)

where cv is the node’s normalized capacity such that∑
v∈Nodes cv = n, and fv is the fraction of the storage space

assigned to node v. A system is thus load balanced when
each node’s share is equal to 1. Thus, the value of fv gives
the system’s load balance. The authors show that, when each
node holds 2 log(n) partitions per capacity unit, the system
load balance is at most 3.6.

To achieve load balance in MemEFS, we adapt the Y0’s
computation of nodes’ shares to our needs. We define the
capacity of each node v, as:

cv =
Memory(v)× n∑
u∈NodesMemory(u)

(2)

Then, the share of node v becomes:

share(v) =
Pv/P

cv/n
(3)

where Pv is the number of partitions of node v and P is the to-
tal number of partitions from the system, P =

∑
v∈Nodes Pv .

If MemEFS would use only 2 log n partitions per node when
scaling out, it would be limited to adding at most 2n log n
nodes to the system. Moreover, in [16], the authors show that
for higher number of partitions, the imbalance factor is even
lower than 3.6. However, in the case of Y0, larger number
of partitions per capacity unit add significant overhead for
storing the finger table and look-up operations. MemEFS is
not affected by this, as it achieves O(1) look-up operations.
Thus, when defining the number of partitions of a node, Pv ,
instead of using 2 log n partitions per capacity unit, we define
a scaling constant β, such that:

Pv = cvβ log n (4)

This constant gives users more control in defining how much
MemEFS should scale out.

C. Initialization and Reconfiguration

Next, we discuss the steps required for MemEFS to initialize
and reconfigure itself.

1) File System Initialization: When a user starts MemEFS,
a node running the Central Manager has to be started. The
manager process takes as input the number of initial worker
nodes and β (for all the experiments in this paper we have used
β = 4). Then, the manager starts the worker nodes. Based on
the load balancing scheme introduced in Section III-B, the
manager creates the required numbers of partitions on the
worker nodes. Then, it creates the Partition-Node table and
broadcasts it to all worker nodes. When the worker nodes
receive this table, they also mount the File System Client.

2) File System Reconfiguration: When an application is
running, the manager queries all worker nodes for their
memory utilization. The time interval at which the queries
are done is configurable, with a default value of one second.
Based on memory utilization information, the file system
reconfigures itself automatically during application runtime by
adding or removing workers. After the new workers have been
started, or before existing workers need to be removed, the
Central Manager determines how many partitions have to be
migrated and where and rebalances the workers. Node removal
is possible when the remaining set of nodes have enough
memory to store all the data. The Central Manager removes
a part of the current nodes if the memory utilization for a
certain period of time, e.g., 45 seconds, does not increase,

and is below a given threshold. We give more details about
the policies used to add and remove nodes in Section IV.

Because during reconfiguration the partition-to-node map-
ping changes, any reads or writes issued by the application
would be invalid and thus, before reconfiguration starts, the
application I/O operations are suspended. The I/O operations
are resumed only after the reconfiguration finishes, i.e., the
data is migrated and each node has the new partition-to-node
mapping.

D. Implementation

We describe next several implementation decisions for
MemEFS. We discuss the data storage options, the commu-
nication protocol between the Central Manager and workers
and the implementation of the file-system client. Finally, we
discuss how MemEFS could support fault tolerance.

1) Data Store: To store file stripes, MemEFS relies on
existing key-value data stores. However, an important mecha-
nism that MemEFS requires is to allow it to partition the data
and migrate partitions among nodes. In our previous work, we
have used Memcached for storing data in memory. Because
in MemEFS we use the concept of partitions, and each node
might store multiple partitions, we could have implemented the
partitions as Memcached databases. However, when reconfig-
uring the file system, there was no mechanism for migrating a
Memcached database between nodes. Therefore, for MemEFS
we have opted to use Redis as a key-value store [7]; each
partition is a database managed by a Redis process.

Redis has several mechanisms to migrate databases between
nodes: (i) cold migration, i.e., dump the database to a file and
transfer the file to the new node; (ii) record a log to disk with
all operations that have altered the database; for migration the
log can be copied to the new node and replayed by the new
Redis process; (iii) master-slave replication; we can achieve
a copy of the initial Redis process by setting the new Redis
process as its slave. After the replication has finished, we can
simply kill the original Redis process.

MemEFS uses the first mechanism as it was the most
advantageous. The second mechanism has two disadvantages:
usually log files are larger than the database dumps, and
replaying the log file might be more time consuming than load-
ing the dump file. Using the last mechanism is difficult because
there is no exact mechanism to check when the replication has
finished. Moreover, during the replication process, the initial
Redis process also generates a database dump, similar to the
first mechanism.

2) Communication between Central Manager and Work-
ers: Each worker node runs a Local Manager process that
communicates with the Central Manager. Figure 3 depicts
the communication protocol. The Local Manager process runs
three threads. The first thread measures the local memory
utilization at regular time intervals; the time interval is config-
urable with a default value of one second. The second thread
sends the local memory utilization information to the Central
Manager whenever this information is requested. The third
thread listens for reconfiguration messages.

When the Local Manager receives the message that the re-
configuration should start, it first sends a signal to the File Sys-
tem Client (FS) to suspend application I/O operations. After
the File System Client acknowledges that the application’s I/O
operations have been suspended, the Local Manager sends an
acknowledgment back to the Central Manager signaling that
the reconfiguration can take place. When the reconfiguration
has finished, the Central Manager sends a message with the
new Partition-to-Node mapping to the Local Manager. When
the Local Manager receives this message, it sends another
signal to the File System Client, letting it know that it should
now reload its Partition-to-Node table and then safely resume
the application’s I/O operations.

3) File System Client: The MemEFS file system client is
implemented as a FUSE module which communicates with
Redis using the hiredis communication library [18]. We have
leveraged the implementation of MemFS’s file system client
and adapted it to support elasticity and suspend/resume for
the application’s I/O operations during reconfigurations. When
receiving the reconfiguration signal, the File System Client
waits until the current read(), write() or other application
requests finish, then blocks all other incoming application
requests, i.e., implemented in the request handling code as
a wait on a semaphore, and sends back an acknowledgment.
When the File System Client receives the signal that informs
it to resume the application operations, it first recomputes the
Partition-to-Node table and then resumes the application’s I/O
operations, i.e., by incrementing the sempahore.

Central
Manager

memory usage

Local
Manager

Worker

Fig. 3. Communication between the Central Manager and a worker.

4) Fault-Tolerance: MemEFS can be configured to be
fault-tolerant and persistent, however fault-tolerance is out-
side the scope of this paper. Making MemEFS fault-tolerant
involves providing data fault-tolerance and high availability
for the Central Manager. Data fault-tolerance can be provided
by Redis. Nevertheless, Redis achieves fault-tolerance through
replication. We believe that replication is not a good strategy
for in-memory runtime file systems because it largely increases
memory usage and also slows down the writing operations.
The Central Manager of MemEFS can be made highly avail-
able by leveraging state-of-the-art solutions [19]. We leave for
future work the different strategies for fault-tolerance, such as
erasure coding for data and state machine replication for the
Central Manager.

IV. EVALUATION

In this section we present the evaluation of MemEFS.
We show how MemEFS improves the resource utilization
efficiency and how its elastic scaling affects the user perceived
performance when running scientific workflows. We evaluate a
set of elastic policies, which prove that, for various workflows,
MemEFS can provide different trade-offs between resource
utilization efficiency and application performance.

A. Experimental Setup

The experiments were executed on our local DAS4 multi-
cluster system [20]. The (in total 74) compute nodes are
equipped with dual-quad-core Intel E5620 2.4 GHz CPUs and
24GB memory. The nodes are connected using a commodity
1Gb/s Ethernet and a premium Quad Data Rate (QDR) In-
finiBand providing a theoretical peak bandwidth of 32Gb/s.
For our experiments we chose to use the IP over InfiniBand
(IPoIB) interface of the latter, which achieves approximately
1GB/s bandwidth. For all experiments, out of the 24GB node
memory, we allocated 20GB to MemEFS and left 4GB for
the operating system and the applications. In our setup, the
compute nodes, which run the application tasks, also act as
storage nodes for MemEFS. Thus, when scaling MemEFS,
the application also scales. In all our experiments the user has
to provide the initial number of nodes, N , on which MemEFS
and the application are deployed. We consider that this number
can be easily computed, for example by using the size of the
input data. Raw performance metrics (bandwidth, latency) are
presented in our previous work [5], where we extensively study
the performance and scalability of MemFS. In this paper we
only focus on MemEFS’ elasticity and show how real-world
applications can benefit from it.

In our experiments we used two real-world and two syn-
thetic scientific workflows. Table I describes the characteristics
of these workflows in terms of total number of tasks, size of
input data and maximum amount of occupied storage during
their runtime. The two real-world workflows we used are
Montage [1] and BLAST [2], as their source code and input
data are available online. Montage is an astronomy application
that builds a mosaic from a set of input images of a galaxy. The
size of the application depends on the number of input images.
Montage is composed of multiple stages in which a different
binary is run for various image operations, e.g., processing,
aggregation, partitioning of results. BLAST is a bioinformatics
application that searches for specific nucleotide sequences in a
database. Like Montage, BLAST is also composed of multiple
stages involving partitioning, processing and aggregation of
data. For Montage, we used a 20× 20 mosaic centered on the
M17 galaxy, while for BLAST we used the NCBI nt database.

The two synthetic scientific workflows we evaluated are
Broadband [21] and Cybershake [21]. Because the access to
their code or used input data is not open, we generated the two
synthetic workflows using execution traces of their real-world
counterparts taken from [22] and [23]. From the workflows
described in [22], [23] these two generated the largest data
amounts. To generate the synthetic workflows, we used the

TABLE I
WORKFLOW CHARACTERISTICS

Application Number of Tasks Input Size Peak Storage Load
Montage 139918 51GB 1TB
BLAST 41472 57GB 550GB

Broadband 1080 6.8GB 700GB
Cybershake 81721 230GB 870GB

Application Skeletons framework [24]. This framework allows
the user to specify the data usage patterns and runtimes of
application tasks, together with dependencies between them.

B. Elastic Scaling Policies

To show how MemEFS can scale elastically based on ap-
plication storage demands, we designed several elastic scaling
policies. The policies can scale out or in the number of storage
(and also compute) nodes. By scaling out we denote the
process of adding nodes to the system. Conversely, by scaling
in we denote the process of removing nodes from the system.
These policies offer trade-offs between saving more resources
and workflow execution speed.

For scaling out we define three policies, which range from
a conservative to an aggressive scale out. If the scaling out
policy is more conservative, i.e., scales with small number of
nodes, the system also benefits from less compute resources
as in MemEFS, the storage is co-located with the compute
nodes. Hence, the more conservative the scaling out policy
is, the higher is the application slowdown. These policies are
summarized as follows:
• CSO - Conservative Scale Out: assuming the system

starts with N nodes, we always scale out by N
2 nodes

when the total system utilization grows higher than 95%.
• NSO - Neutral Scale Out: assuming the system starts with
N nodes, we always scale out by N nodes when the total
system utilization grows higher than 95%.

• ASO - Aggressive Scale Out: we always double the
current number of system nodes when the total system
utilization grows higher than 95%.

For scaling in we define two policies: scale in conservatively
or aggressively. The more aggresive the scaling in policy is,
the higher is the application slowdown. These policies are
summarized as follows:
• CSI - Conservative Scale In: when the total system

utilization drops below 75%, we remove 25% of the
nodes.

• ASI - Aggressive Scale In: when the total system utiliza-
tion drops below 50%, we remove 50% of the nodes.

For applications that only exhibit an increase in data usage
we only evaluate the scaling out policies. For applications
for which we delete runtime generated data that is no longer
needed, we combine the scaling out with the scaling in
policies.

To illustrate the behavior of the policies, Figure 4 depicts the
resource utilization and allocated amount during the runtime
of Montage for all the six possible policy combinations. Due
to space constraints, we do not present the elastic scaling

behavior of the other evaluated applications. However, we
present in the next section their performability evaluation to
show how the scaling policies affect the resource utilization
efficiency and the application performance.

C. MemEFS Performability

We ran the workflows on MemEFS using two deployment
schemes: static and elastic. In the static deployment scheme,
MemEFS provisions enough nodes to store all data generated
by the application. In the elastic deployment scheme initially
MemEFS provisions enough nodes to copy the application
input data and afterwards it uses the previously discussed
scaling policies. The results presented in the remainder of this
section are obtained from averaging 4 experiment runs.

To evaluate the elastic policies we use the following per-
formability metrics:
• Resource Usage Improvement: represents the amount

of resources (memory, nodes) wasted for an elastic run
compared to the amount of resources wasted for the static
run. The resource usage improvement is defined by:

RUI =
W (static)−W (elastic)

W (static)
,

where W (s) represents the amount of wasted resources
in a deployment scheme s. We define this amount as
W (s) = A(s) − U(s), where A(s) is the amount of
allocated resources, and U(s) is the amount of used
resources.

• Performance Overhead: represents how much slower is
an elastic run compared to the static run. This overhead
is given by elastically running MemEFS, since an elastic
run adds reconfiguration overheads and also leads to less
compute capacity for the application.

Figure 5a presents the results of our elastic policies for
a run of Montage. We sorted the plot bars based on the
policy aggressivity. During the runtime of Montage we delete
the intermediate data that is no longer needed and, thus, we
evaluate all possible combinations of our proposed policies.
As expected, when increasing the aggressivity of our policies,
the resource usage improvement decreases together with the
performance overhead. This is explained by the fact that more
aggresive policies use more workers during runtime, thus
achieving a better application speedup. For Montage, the re-
source usage improvement varies between 31.9% (ASO+ASI)
and 65.7% (CSO+CSI), while the performance overhead
varies between 14.4% (ASO+ASI) and 28.5% (CSO+CSI).
The large difference between the two metrics is given by
Montage’s design: large parallel stages are mixed with long
sequential stages (synchronization points represented by data
aggregation/partitioning stages). During the sequential stages
our policies are able to largely improve the resource utilization
while not adding performance overhead compared to the static
Montage run.

Figure 5b shows the policies evaluation when running
BLAST. For BLAST, we cannot delete any data generated

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1000 2000 3000 4000 5000 6000 7000

M
e

m
o

ry
 (

G
B

)

Time (s)

Used Memory
Total Memory

(a) CSO+ASI

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1000 2000 3000 4000 5000 6000 7000

M
e

m
o

ry
 (

G
B

)

Time (s)

Used Memory
Total Memory

(b) CSO+CSI

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1000 2000 3000 4000 5000 6000

M
e

m
o

ry
 (

G
B

)

Time (s)

Used Memory
Total Memory

(c) NSO+ASI

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1000 2000 3000 4000 5000 6000 7000

M
e

m
o

ry
 (

G
B

)

Time (s)

Used Memory
Total Memory

(d) NSO+CSI

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1000 2000 3000 4000 5000 6000

M
e

m
o

ry
 (

G
B

)

Time (s)

Used Memory
Total Memory

(e) ASO+ASI

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1000 2000 3000 4000 5000 6000

M
e

m
o

ry
 (

G
B

)

Time (s)

Used Memory
Total Memory

(f) ASO+CSI

Fig. 4. The behavior of elastic scaling policies for Montage.

during runtime, thus we evaluate only the scaling out poli-
cies. As expected, when the policy aggressivity increases,
both the assessed metrics show a decreasing trend, with
the performance overhead being proportional to the resource
utilization improvement. In this case, the resource utilization
improvement ranges from 28.3% (ASO) to 58% (CSO), while
the performance overhead ranges from 32.2% (ASO) to 45.7%
(CSO). As opposed to Montage, BLAST does not have
sequential stages. Thus, running with less worker nodes also
slows down the execution.

Figure 5c presents the policies evaluation for the synthetic
Broadband workflow. Similarly to BLAST, we could not delete
data generated during runtime, thus we could not evaluate
the scaling in policies. As for the previous applications, we
also notice a decreasing trend in both metrics while the policy
aggresivity increases. The resource usage improvement varies
between 2.3% (ASO) and 55.6% (CSO) and the performance
overhead varies between 7.5% (ASO) and 22.2% (CSO). For
Broadband, it is interesting to notice that the CSO policy
is a clear winner with a 55.6% resource usage improvement
while showing only a 22.2% performance overhead. This is
explained by the Broadband workflow structure as presented
in [23]. In the first stages, the workflow is less parallel, while
the final stages exhibit large parallelism. Thus, the CSO policy
largely decreases the resource utilization for the first stages
while not slowing down too much the application.

Figure 5d shows the policies evaluation for the synthetic
Cybershake workflow. Because Cybershake needed a larger
storage for its input, we started the workflow with more
nodes than the previous workflows, i.e., 32 nodes. Because
our cluster is limited to only 64 nodes, the NSO and ASO

policies behave similarly. Thus, for these policies we notice
the same values for both resource utilization improvement and
performance overhead metrics. Since for Cybershake we were
able to delete data that is no longer needed during runtime,
we also combined the scaling out policies with the scaling
in policies. As expected, when the aggresivity of the policy
increases, the evaluated metrics show a decreasing trend in
resource utilization improvement and performance overhead.
Like in the case of Broadband, we notice that the conserva-
tive policy is a clear winner. The CSO+CSI saves 47.04%
resources while it decreases the runtime by only 19.9%. The
explanation for this behavior is similar to the Broadband case:
Cybershake exhibits less achievable parallelism in the first
workflow stages. Hence, the CSO policy is able to save more
resources while not decreasing too much the runtime.

D. Storage Load Balancing

In Figure 6 we present our analysis of MemEFS storage
load balance during an elastic run. We selected Montage for
this analysis, which we ran with a smaller input than in
the previous experiments. The experiment starts on 8 nodes
and the highest number of used nodes is 24. The experiment
finishes on 12 nodes. The elastic scaling policy used in this
experiment is NSO+ASI. Hence, the system scales out twice
and scales in only once. We measured the memory load of all
the nodes in the system at each second. To measure the load
imbalance, we computed the average and standard deviation.

Figure 6 shows the average node memory utilization and
the standard deviation for each 1 second time interval. We
notice that the difference between the average and standard
deviation is at most 17%. This imbalance of 17% is given
by the partition granularity. In this case, the initial number

 0

 20

 40

 60

 80

 100

CSO+CSI

CSO+ASI

NSO+CSI

NSO+ASI

ASO+CSI

ASO+ASI

Pe
rc

en
ta

ge
 [%

]

Policy

Resource Usage Improvement
Performance Overhead

(a) Montage.

 0

 20

 40

 60

 80

 100

CSO NSO ASO

Pe
rc

en
ta

ge
 [%

]

Policy

Resource Usage Improvement
Performance Overhead

(b) BLAST.

 0

 20

 40

 60

 80

 100

CSO NSO ASO

Pe
rc

en
ta

ge
 [%

]

Policy

Resource Usage Improvement
Performance Overhead

(c) Broadband.

 0

 20

 40

 60

 80

 100

CSO+CSI

CSO+ASI

NSO+CSI

NSO+ASI

ASO+CSI

ASO+ASI

P
e
rc

e
n
ta

g
e
 [
%

]

Policy

Resource Usage Improvement
Performance Overhead

(d) Cybershake.

Fig. 5. Impact of scaling policies on resource utilization efficiency and
application peformance for various workflows.

 0

 5

 10

 15

 20

 0 500 1000 1500 2000 2500

M
e
m

o
ry

 (
G

B
)

Time (s)

Avg
Avg - Stdev
Avg + Stdev

Fig. 6. Load balancing analysis for a run of Montage.

of partitions does not divide evenly to the number of nodes
after two reconfigurations. Hence, a part of the nodes hold
more partitions than the others. Thus, the system achieves this
small load imbalance. The peaks/low points on the graph and
then the sudden increase/decrease in the memory utilization
represent the behavior of scaling out/in. A decrease after a
peak means that the system has scaled out and some of the
partitions have been moved to other nodes leading to an
overall decrease in utilization for all the nodes. A sudden
increase after a low point on the graph represents the scaling
in behavior. After the utilization drops below the scaling in
threshold, some partitions are migrated and a part of the nodes
removed from the system. Thus, the overall utilization in the
remaining nodes increases.

E. Discussion

We have evaluated MemEFS’ elastic scalability on differ-
ent real-world and synthetic scientific workflows. We have
designed a set of elastic scaling policies, in a range from
scaling aggressively to scaling conservatively, such that the
user could trade off application performance for resource
utilization improvement, thus also improving energy consump-
tion. As expected, our results show that when increasing the
policy aggressivity both the resource usage improvement and
the application slowdown decrease. Our experiments show
that with conservative scaling policies, MemEFS obtains a
resource utilization improvement from 47% to 65.7% on all
applications. The incurred performance overhead depends on
the application structure, being at most 28% for three of the
four evaluated workflows. In all these cases, the performance
overhead experienced by the user is much smaller than
the resource utilization improvement. The only workflow for
which the performance overhead is compared to the resource
utilization improvement is BLAST, which has a highly parallel
structure. Nevertheless, these experiments show that users
can choose from a space of different trade-offs, depending
of their application structure and performance and utilization
objectives.

V. RELATED WORK

We discuss two classes of related work: (i) works that
follow objectives similar to ours, focusing on elasticity and

in-memory data storage; (ii) and works that address some of
our design issues, focusing on hashing mechanisms for better
load balancing in key-value stores.

A. Elasticity in Data Storage Systems

Although elastic application scaling has gathered a lot of
attention, especially with the use of IaaS clouds, research
efforts were mostly focused on provisioning compute re-
sources. However, scientific applications can process large
data amounts, requiring fast access to on-demand storage. Dis-
tributed file systems, usually used to store application’s data,
e.g., PVFS [25], GlusterFS [26], XtreemFS [27], HDFS [28],
CEPH [29], provide limited elasticity support as they are
designed for cluster-wide deployments. Usually the environ-
ments in which they run are stable; node addition and removal
represent the exception not the norm. These file-systems are
designed with durability in mind and they employ complex
data structures to optimize the storage on disks by using
memory for data caching. Most of these file systems provide
only manual re-balancing, requiring the intervention of an
administrator. CEPH supports automatic re-balancing but with
additional resource usage.

The problem of storage elasticity was addressed by Nicolae
et.al [30] and Lim et.al [31]. Nicolae et.al propose an elastic
storage solution for IaaS clouds in the form of a POSIX
file-system. The authors share a part of our goals, mainly
to minimize the wasted storage and thus the cost payed by
the user while keeping the application performance overhead
low. The proposed file-system provisions and releases virtual
disks of fixed size from the IaaS cloud transparently to the
application to meet time-varying storage demands. However,
this file-system can only be used by the application running in
the VM in which the file system is installed. Lim et.al. provide
an elastic storage service based on HDFS that provisions nodes
from a cloud provider and uses them for storage capacity.
The authors use the CPU utilization of the storage nodes
as a metric to change the number of provisioned nodes,
considering that this metric is correlated to the performance
of the storage service, e.g., response time per request. When
the number of storage nodes is changed, data re-balancing is
also performed, with the goal of optimizing CPU utilization
and I/O bandwidth. This solution adapts the number of storage
nodes to improve application data access time, while MemEFS
adapts its number of nodes to total application storage demand.

Faster data access can be achieved by distributing the data
across the memory of the nodes on which the application
is running. RamCloud [32] and FaRM [33] provide different
optimized means for applications to store their data in mem-
ory. Other distributed in-memory caching systems, based on
memcached, were proposed as an intermediate layer between
the applications and the distributed file systems, to speed up
the access to data [34], [35]. However, these solutions were
designed to be deployed on the entire cluster and they lack
elasticity support. AMFS [4] or MemFS [6] provide generic
in-memory runtime file systems but are also designed to run
on a static number of nodes.

Elasticache [36] and Hazelcast [37] provide elastic in-
memory caching services based on memcached and Redis.
Although they allows users to add more nodes to the in-
memory cache cluster, they lack automated load-balancing and
auto-scaling mechanisms to change the number of nodes based
on dynamic application storage demand.

B. Load Balancing Schemes in DHTs

Several works focused on load balancing techniques for key-
value stores [38], [39], [40], [16]. The most promising class
of solutions is based on consistent hashing.

ZHT is a zero-hop distributed hash table [38]. As in
MemEFS, ZHT keys are assigned to partitions which are
then distributed over physical nodes. Each node has one
or more ZHT instances, each of them maintaining one or
more partitions and serving requests for them. ZHT sup-
ports heterogeneous systems with various storage capacities
and computing power by varying the number of partitions
per node. However, ZHT provides poor elasticity support in
contrast to MemEFS, for which node addition or removal is
fully automated. When a new node joins ZHT, it adds itself
in the ring as the neighbor of the most loaded node and starts
migrating partitions from its neighbor. Node departures are
done manually: for a node to leave the system, an administrator
needs to modify the global membership table. Furthermore, a
detailed comparison between MemEFS and ZHT is outside
the scope of this paper, as it would translate to comparing
ZHT and Redis. This is because MemEFS offers a POSIX-
like interface to its data-store (Redis), while ZHT only offers
a simple key-value interface.

Other works rely on the use of two hash functions [39],
[40], [16]: one to map the nodes to a continuous interval
[0, 1) and another one determine the location of the keys
by mapping them in the same interval. Brinkmann et al.
introduces two adaptive hashing strategies [39] to redistribute
keys among nodes when the capacities of the nodes, the
number of nodes or the number of keys change. Each node
is in charge of multiple virtual bins, each virtual bin handling
one sub-interval with a length proportional to its capacity and a
stretch factor. Schindelhauer et al. improves the load balancing
in heterogeneous DHT by choosing nodes for keys based on
weights [40]. Each node is assigned a positive weight and
keys are distributed to it with a probability proportional with
the node’s weight and inversely proportional with the sum of
all node weights. To provide elasticity and cope with node
heterogeneity, MemEFS adapts Y0’s algorithm [16]. Opposed
to these previous solutions, Y0 gives MemEFS more flexibility
in deciding the total number of partitions, allowing a more
fine-grain control on how much MemEFS should scale.

VI. CONCLUSION AND FUTURE WORK

Scientific workflows exhibit significant storage demand vari-
ability during runtime. To overcome this issue, traditional
approaches generally overprovision the number of storage
nodes, such that the system could handle the peak storage

demand. Our contribution, MemEFS, scales elastically at run-
time, transparently to the application, based on the storage
demand, while distributing data uniformly across system nodes
to achieve a load balanced storage and network traffic.

We have shown that, with simple adaptation policies,
MemEFS is capable to alleviate users from the need of estimat-
ing the application resource demands in advance and overpro-
visioning resources. Our experiments show that MemEFS is
able to largely improve resource utilization while adding only
modest performance overheads. Such results are a promising
step in further exploring trade-offs between resource utiliza-
tion, energy and application performance.

As future work we plan to explore the design space of
scaling policies for MemEFS, to give users a range of options
between application performance, used memory and monetary
and energy consumption costs. We also plan to optimize the
reconfiguration process of MemEFS, by allowing applications
to continue their I/O operations during data migration. Finally,
we plan to implement fault-tolerance in MemEFS.

ACKNOWLEDGMENTS

This work is partially funded by the Dutch public-private
research community COMMIT/. The authors would like to
thank Kees Verstoep for providing excellent support on the
DAS-4 clusters.

REFERENCES

[1] J. C. Jacob, D. S. Katz, G. B. Berriman, J. C. Good, A. Laity,
E. Deelman, C. Kesselman, G. Singh, M.-H. Su, T. Prince et al., “Mon-
tage: a grid portal and software toolkit for science-grade astronomical
image mosaicking,” International Journal of Computational Science and
Engineering, Vol. 4, no. 2, pp. 73–87, 2009.

[2] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman,
“Basic local alignment search tool,” Journal of molecular biology, Vol.
215, no. 3, pp. 403–410, 1990.

[3] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: portable parallel
programming with the message-passing interface. MIT press, 1999,
Vol. 1.

[4] Z. Zhang, D. S. Katz, T. G. Armstrong, J. M. Wozniak, and I. Foster,
“Parallelizing the Execution of Sequential Scripts,” High Performance
Computing, Networking, Storage and Analysis (SC), 2013 International
Conference for. IEEE, 2013.

[5] A. Uta, A. Sandu, and T. Kielmann, “Overcoming data locality: An in-
memory runtime file system with symmetrical data distribution,” Future
Generation Computer Systems, 2015.

[6] ——, “MemFS: an In-Memory Runtime File System with Symmetrical
Data Distribution,” IEEE Cluster, 2014, pp. 272–273, (poster paper).

[7] S. Sanfilippo and P. Noordhuis, “Redis,” http://redis.io, 2014.
[8] M. Szeredi et al., “FUSE: Filesystem in userspace,”

http://fuse.sourceforge.net/, 2014.
[9] B. Aker, “Libmemcached,” http://libmemcached.org/libMemcached.html,

2014.
[10] B. Fitzpatrick, “Distributed Caching with Memcached,” Linux journal,

Vol. 2004, no. 124, p. 5, 2004.
[11] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. Maechling,

R. Mayani, W. Chen, R. da Silva, M. Livny, and K. Wenger, “Pegasus:
a workflow management system for science automation,” Journal of
Future Generation Computer Systems. Elsevier, 2015.

[12] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web,” Twenty-ninth
annual ACM symposium on Theory of computing. ACM, 1997, pp.
654–663.

[13] “xxhash,” https://code.google.com/p/xxhash/, 2014.
[14] D. Eastlake and P. Jones, “Us secure hash algorithm 1 (sha1),” 2001.
[15] R. Rivest, “The md5 message-digest algorithm,” 1992.

[16] P. B. Godfrey and I. Stoica, “Heterogeneity and load balance in
distributed hash tables,” INFOCOM 2005. 24th Annual Joint Conference
of the IEEE Computer and Communications Societies., Vol. 1. IEEE,
2005, pp. 596–606.

[17] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
ACM SIGCOMM Computer Communication Review, Vol. 31, no. 4.
ACM, 2001, pp. 149–160.

[18] “hiredis,” https://github.com/redis/hiredis, 2014.
[19] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper: wait-

free coordination for internet-scale systems,” USENIX annual technical
conference, Vol. 8, 2010, pp. 11–11.

[20] “DAS-4, The Distributed ASCI Supercomputer,”
http://www.cs.vu.nl/das4/, 2014.

[21] “SCEC project, Southern California Earthquake Center,”
http://www.scec.org/, 2015.

[22] “Pegasus Workflow Generator,” https://confluence.pegasus.isi.edu/display/
/pegasus/WorkflowGenerator, 2015.

[23] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K. Vahi,
“Characterizing and profiling scientific workflows,” Future Generation
Computer Systems, Vol. 29, no. 3, pp. 682–692, 2013.

[24] Z. Zhang and D. Katz, “Using application skeletons to improve escience
infrastructure,” e-Science (e-Science), 2014 IEEE 10th International
Conference on, Vol. 1, Oct 2014, pp. 111–118.

[25] R. B. Ross, R. Thakur et al., “PVFS: A parallel file system for linux
clusters,” 4th Annual Linux Showcase and Conference, 2000, pp. 391–
430.

[26] “GlusterFS,” http://www.gluster.org/, 2014.
[27] F. Hupfeld, T. Cortes, B. Kolbeck, J. Stender, E. Focht, M. Hess, J. Malo,

J. Marti, and E. Cesario, “The XtreemFS Architecture - A Case for
Object-based File Systems in Grids,” Concurrency and computation:
Practice and experience, 2008.

[28] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop Dis-
tributed File System,” Mass Storage Systems and Technologies (MSST),
2010 IEEE 26th Symposium on. IEEE, 2010, pp. 1–10.

[29] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” 7th sym-
posium on Operating systems design and implementation. USENIX
Association, 2006, pp. 307–320.

[30] B. Nicolae, P. Riteau, and K. Keahey, “Bursting the Cloud Data
Bubble: Towards Transparent Storage Elasticity in IaaS Clouds,” IEEE
28th International Parallel and Distributed Processing Symposium, ser.
IPDPS ’14, 2014, pp. 135–144.

[31] H. C. Lim, S. Babu, and J. S. Chase, “Automated control for elastic
storage,” 7th International Conference on Autonomic Computing, ser.
ICAC ’10, 2010, pp. 1–10.

[32] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich,
D. Mazières, S. Mitra, A. Narayanan, D. Ongaro, G. Parulkar et al.,
“The case for RAMCloud,” Communications of the ACM, Vol. 54, no. 7,
pp. 121–130, 2011.

[33] A. Dragojevic, D. Narayanan, M. Castro, and O. Hodson, “FaRM: Fast
Remote Memory,” 11th USENIX Symposium on Networked Systems
Design and Implementation, 2014, pp. 401–414.

[34] N. S. Islam, X. Lu, M. Wasi-ur Rahman, R. Rajachandrasekar, and D. K.
Panda, “In-memory i/o and replication for hdfs with memcached: Early
experiences,” 2014 IEEE International Conference on Big Data. IEEE,
2014, pp. 213–218.

[35] F. R. Duro, J. G. Blas, and J. Carretero, “A hierarchical parallel storage
system based on distributed memory for large scale systems,” 20th
European MPI Users’ Group Meeting, ser. EuroMPI ’13. New York,
NY, USA: ACM, 2013.

[36] “Amazon ElastiCache,” http://aws.amazon.com/elasticache/, 2015.
[37] “Hazelcast,” http://http://hazelcast.com/, 2015.
[38] T. Li, X. Zhou, K. Brandstatter, D. Zhao, K. Wang, A. Rajendran,

Z. Zhang, and I. Raicu, “ZHT: A light-weight reliable persistent dy-
namic scalable zero-hop distributed hash table,” Parallel & Distributed
Processing Symposium (IPDPS), 2013.

[39] A. Brinkmann, K. Salzwedel, and C. Scheideler, “Compact, Adaptive
Placement Schemes for Non-uniform Requirements,” 14th Annual ACM
Symposium on Parallel Algorithms and Architectures, ser. SPAA ’02.
New York, NY, USA: ACM, 2002, pp. 53–62.

[40] C. Schindelhauer and G. Schomaker, “Weighted Distributed Hash Ta-
bles,” ACM Symposium on Parallelism in Algorithms and Architectures,
ser. SPAA ’05. New York, NY, USA: ACM, 2005, pp. 218–227.

