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I. INTRODUCTION

Many scientific computations can be expressed as Many-
Task Computing (MTC) applications. In such scenarios, ap-
plication processes communicate by means of intermediate
files, in particular input, temporary data generated during
job execution (stored in a runtime file system), and output.
In data-intensive scenarios, the temporary data is generally
much larger than input and output. In a 6x6 degree Montage
mosaic [3], for example, the input, output and intermediate
data sizes are 3.2GB, 10.9GB and 45.5GB, respectively [5].
Thus, speeding up I/O access to temporary data is key to
achieving good overall performance.

General-purpose, distributed or parallel file systems such as
NFS, GPFS, or PVFS provide less than desirable performance
for temporary data for two reasons. First, they are typically
backed by physical disks or SSDs, limiting the achievable
bandwidth and latency of the file system. Second, they provide
POSIX semantics which are both too costly and unnecessarily
strict for temporary data of MTC applications that are written
once and read several times. Tailoring a runtime file system to
this pattern can lead to significant performance improvements.

Memory-based runtime file systems promise better per-
formance. For MTC applications, such file systems are co-
designed with task schedulers, aiming at data locality [5].
Here, tasks are placed onto nodes that contain the required
input files, while write operations go to the node’s own mem-
ory. Analyzing the communication patterns of workflows like
Montage [3], however, shows that, initially, files are created by
a single task. In subsequent steps, tasks combine several files,
and final results are based on global data aggregation. Aiming
at data locality hence leads to two significant drawbacks: (1.)
Local-only write operations can lead to significant storage
imbalance across nodes, while local-only read operations cause
file replication onto all nodes that need them, which in worst
case might exceed the memory capacity of nodes performing
global data reductions. (2.) Because tasks typically read more
than a single input file, locality-aware task placement is
difficult to achieve in the first place.

To overcome these drawbacks, we designed a distributed, in-
memory runtime file system called MemFS that replaces data
locality by uniformly spreading file stripes across all storage
nodes. Due to its striping mechanism, MemFS leverages full
network bisection bandwidth, maximizing I/O performance
while avoiding storage imbalance problems.

II. MEMFS

The MemFS distributed file system consists of three key
components: a storage layer, a data distribution component,
and a file system client. Typically, all three components run
on all application nodes. In general, however, it would also
be possible to use a (partially) disjoint set of storage servers,
for example when the application itself has large memory
requirements.

1) Storage: This layer exposes a node’s main memory
for storing the data in a distributed fashion. We use the
Memcached [2] key-value store.

2) Data Distribution: MemFS equally distributes the files
across the available Memcached servers, based on file striping.
For mapping file stripes to servers, we use a hashing function
provided by Libmemcached [1], a Memcached client library.
We use the file names and stripe numbers as hash keys for
selecting the storage servers.

3) File System Client: We expose our storage system using
a FUSE [4] layer, exposing a regular file system interface to the
MTC applications. At startup, the FUSE clients are configured
with a list of storage servers. Through the Libmemcached
API, the FUSE file system communicates with the Memcached
storage servers.

Figure 1 shows the overall system design of MemFS, using
the example of a write operation, issuing Memcached set
commands; for read operations, get commands would be used
instead.

Fig. 1. MemFS System Design
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(a) 64 nodes, scaling up to 512 cores
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(b) 8–64 nodes, scaling out to 512 cores
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Fig. 2. Montage Vertical and Horizontal Scalability and Memory Consumption

III. MONTAGE RESULTS

We ran the Montage [3] workflow on our local DAS4 system
(www.cs.vu.nl/das4/). Its compute nodes are equipped with
dual-quad-core Intel E5620 2.4 GHz CPUs and 24GB memory.
The nodes are connected using Quad Data Rate (QDR) Infini-
Band, using the IP over InfiniBand (IPoIB) interface results
in approximately 1GB/s bandwidth.

We compare the performance achieved by MemFS to the
locality-oriented AMFS [5] in-memory file system. AMFS
improves application performance by issuing only local writes
and uses the AMFS Shell scheduler for executing compute
tasks on those nodes that actually store needed files to improve
read performance. AMFS Shell, however, can only guarantee
that one file per job achieves data locality. In case multiple
files are read per scheduled job, expensive remote reads
become necessary. MemFS, in contrast, uniformly distributes
file stripes across storage nodes by means of a distributed
hash function to achieve balanced memory consumption, while
utilizing the aggregate bandwidth among all nodes. For all
experiments, the compute nodes also operate as storage nodes,
for both AMFS and MemFS.

AMFS Shell originally had been designed such that it
schedules one task per compute node. For using our multicore
cluster, we have modified AMFS Shell such that it can sched-
ule multiple jobs at a time on a given node, while preserving
data-locality when using AMFS. When using MemFS as
the storage backend, the multicore-aware scheduler simply
submits multiple jobs at a time, ignoring data-locality.

We assessed each system’s scaling behaviour. By scaling
vertically (up), we analyze the system behaviour on a fixed
number of nodes, while gradually increasing the number of
compute cores used for task processing. Conversely, by scaling
horizontally (out), we analyze the system behaviour while
gradually increasing the number of compute nodes.

Figure 2a shows the vertical scalability of the two file sys-
tems for the Montage 6 workflow. The results were determined
on 64 nodes, using gradually 1, 2, 4, and 8 compute cores each.
MemFS shows good scalability up to 512 cores, while AMFS
scales only up to 256 compute cores.

Figure 2b depicts the horizontal scalability comparison of

the two file systems with Montage 6. We scaled out the
systems from 8 to 64 compute nodes, using 8 cores each.
Indicated by the vertical scalability results (Figure 2a), we also
show AMFS using only 4 cores each which is faster with 32
and 64 nodes. The results show that while both file systems
achieve good horizontal scalability, MemFS leverages better
performance.

Figure 2c shows the aggregate memory consumption for
the two file systems with Montage 6. The measurements were
taken at the end of each experiment presented in Figure 2b
on 8 to 64 nodes. The graph shows the superior memory
management of MemFS for all scales. Increased data usage
of AMFS can be explained by its replication-on-read policy
for improving data locality.

IV. CONCLUSIONS

MemFS is a fully-symmetrical, in-memory distributed run-
time file system. Its design is based on uniformly distributing
file stripes across the storage nodes belonging to an appli-
cation by means of a distributed hash function, purposefully
sacrificing data locality for balancing both network traffic and
memory consumption. This way, reading and writing files
can benefit from full network bisection bandwidth, while data
distribution is balanced across the storage servers.
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