Reproducible Model Sharing for Al Practitioners

Amin Moradi
amin@moradi.io
LIACS, Leiden University
The Netherlands

ABSTRACT

The rapid advancements in Al and Machine Learning (ML) technol-
ogy, from both industry and academia lead to the need of large-scale,
efficient and safe model sharing. With recent models, reproducibil-
ity has gained tremendous complexity both on the execution and
the resource consumption level. Although sharing source-code and
access to data is becoming common practice, the training process
is limited by software dependencies, (sometimes large-scale) com-
putation power, specialized hardware, and is time-sensitive. Next
to these limitations, trained models are gaining financial value and
organizations are reluctant to release models for public access. All
these severely hinder the timely dissemination and the scientific
sharing and reviewing process, limiting reproducibility. In this work
we make the case for transparent and seamless model sharing to en-
able the ease of reviewing and reproducibility for ML practitioners.
We design and implement a platform to enable practitioners to de-
ploy trained models and create easy-to-use inference environments,
which can be easily shared with peers, conference reviewers, and/or
made publicly available. Our solution follows a provider agnostic
practice and can be used internally in institutional infrastructures
or public/private cloud providers.

CCS CONCEPTS

» General and reference — Reliability; Empirical studies.

KEYWORDS

reproducibility, model sharing

ACM Reference Format:

Amin Moradi and Alexandru Uta. 2021. Reproducible Model Sharing for
Al Practitioners. In Fifth Workshop on Distributed Infrastructures for Deep
Learning (DIDL) 2021 (DIDL °21), December 6, 2021, Virtual Event, Canada.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3493652.3505630

1 INTRODUCTION

Recent interest and investments of academia and industry in Al
research have attracted many-fold increases in the number of con-
ference contributions and trained machine learning (ML) models. A
report from 2019 [28] states that the number of submitted articles
for ML conferences has increased by up to 30% compared to 25%
in 2018. This growth in the number of submissions continues, as
we depict in Table 1, and gives rise to large numbers of models that

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

DIDL °21, December 6, 2021, Virtual Event, Canada

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9173-3/21/12.

https://doi.org/10.1145/3493652.3505630

Alexandru Uta
a.uta@liacs.leidenuniv.nl
LIACS, Leiden University

The Netherlands

Table 1: Increase in the number of submissions in the last
four years for NeurIPS, ICML and ICLR.

Conference | 2020 | 2019 | 2018 | 2017

NeurIPS 9454 | 6743 | 4856 | 3590
ICML 4990 | 3424 | 2473 | 1676
ICLR 2594 | 1449 | 935 | 490

need to be evaluated and assessed by the (scientific) community. In
this paper we make the case for building model sharing platforms to
aid the community and AI/ML venues in the reproducibility process
without going through the costly re-training process.

So far, reproducibility has been tackled for ML, as for other fields,
by sharing code and data, or following clear performance evalua-
tion protocols [30]. This approach led to remarkable improvements
in reproducibility. As a result, containerizing source-code and data
is en route to become routine practice. Although this improves
reproducibility [10], the increase in the size of training datasets
and trained models, and the complexity of the deployments are
major drawbacks for this approach. It is increasingly difficult to
retrain models, as this process means utilizing specialized hard-
ware, using large amounts of energy, and increasingly larger carbon
emissions [23, 27]. At industry level, sharing data might also be
impractical due to the inability to share sensitive training data. We
therefore make the case for a model sharing platform to seamlessly
allow practitioners from both industry and academia to share their
models without the need for re-training and without the need to
share training data and even the model itself. For (conference) re-
viewers to reproduce work, the process should be as easy as running
inference in a sandboxed environment, with the input of choice.

Large-scale models are difficult to retrain, thus reproduce. For
example, in 2019 Google published BERT (8], a revolutionary lan-
guage model with 360 M parameters and a trained model of 1.5 GB.
Following BERT, GPT-2 [25] published by OpenAl had 1.5B param-
eters and almost 7 GB in size. In 2020, OpenAl pushed the language
models further by publishing GPT-3 [5] with 176 B parameters
and 600 GB in trained model size. This extreme growth rate and
complexity does not reflect in all ML research but it is significant.
Image classification networks, Deep Reinforcement Learning [20]
and Generative Networks [11] often require powerful GPUs and
TPUs [19] to run for hours or days to reproduce results.

While the research community welcomes the growth and success
of recent findings in Al and ML, the pruning and evaluation of sci-
entific work have become major challenges. Reviewers are limited
and bound by their resources and cannot reproduce all findings of
the subject articles. Thus, the judgement lies between the trust of
the reviewer and the reviewee. To make this cumbersome process
easy and intuitive without pressuring researchers to undergo many
changes in the reviewing process, we designed and implemented a
conference and scientific evaluation oriented platform—MLC.

https://doi.org/10.1145/3493652.3505630
https://doi.org/10.1145/3493652.3505630

DIDL 21, December 6, 2021, Virtual Event, Canada

Inference at scale in cloud computing is achieved through orches-
tration platforms like Kubernetes [13]. KFserver [7], Polyaxon [24]
and Kubeflow [4] are open-source ML inference platforms, opti-
mized for scalability, high availability, and performance. Managing
these platforms requires expert knowledge in cloud, security, net-
working and distributed processing. Serverless implementations
also impose significant resource allocation and deployment ef-
fort [18]. Although all these platforms could be used for model
sharing, they are not targeted to improve reproducibility and re-
viewing processes and require large-scale resources for deployment.

In turn, in this paper we showcase an easy-to-use platform that
enables seamless model sharing for improving the reviewing and
reproducibility processes of ML-related conferences. Our proto-
type, MLC, proposes a scalable, cloud-based architecture, which
can be deployed on standalone servers or distributed clusters within
institutes or public/private cloud providers.

At the infrastructure level, we designed MLC with a scale-to-
zero policy for maximum cost efficiency and trained model privacy
preservation. We have also introduced automation toolsets to facil-
itate running MLC internally within universities infrastructures, if
needed. Although managing and bootstrapping MLC requires inter-
mediate technical skills, our approach in providing such a platform
is to minimise maintenance and ease of use for both parties—the
MLC administrator and the MLC users (e.g., practitioners, review-
ers). Thus, as a complementary toolset we introduce a Command
Line Interface (CLI) for researchers to easily transfer trained models
from a local environment to a remote MLC deployment for publish-
ing their findings. Within the CLI researchers can create shareable
links with public, private or limited access for (re)viewers in an
interactive presentation view.

MLC enables access restriction on deployed models such that
only reviewers and model submitters can interact within the MLC
Model Showcase user interface. In addition to the use-case in the
research community, MLC enables the industry to reproduce, test
and evaluate ML models faster and more precise without going
through the training process and provide a clear road-map for
scalable inference.

MLC is an open-source project hosted on Github!. In summary,
the contributions of this work are the following:

(1) The design and implementation of MLC, which is an in-
frastructure agnostic model sharing platform, built to help
scientific venues, practitioners and industry at large to share
and evaluate trained models without re-running expensive
training processes, or without sharing confidential training
data or parameters.

(2) The prototype and initial performance evaluation of MLC,
showing that MLC is efficient in sharing trained models. We
use three real-world models and run inference on real-world
data, deploying MLC in GCP.

2 BACKGROUND

To enable seamless model sharing, MLC builds upon containers
and their orchestration, microservices and model serving. We dis-
cuss containerized and container orchestration platforms and how

!https://github.com/maminio/mlc.git

Amin Moradi and Alexandru Uta

micro-services can work along with service discoverability tools
for serving ML models.

Recent improvements in Cloud-based applications have pushed
the boundaries of ML training and computational limits further
down the line. Hardware limitation is fading, and scaling ML train-
ing is becoming painless and straightforward. Training on Petabytes
of data on hundreds of powerful GPUs is now possible on public
cloud providers. With each iteration of new GPUs and TPUs and
increase in availability and cost reduction, we can expect a full
transition both for training and inference to cloud platforms.

Containerisation is one of the main drivers that enabled the
transition of software to cloud-based architectures. By isolating de-
pendencies over the software layer and network access, containers
are able to replicate and distribute workloads over a collection of
self-contained applications. These portable applications have also
attracted the ML community to leverage industry best-practices
for shipping software. By using containers, Machine Learners are
able to preserve a well reproducible experiment regardless of the
runtime environment. This phenomenon has enabled better repro-
ducibility in ML research, driven by automation at the application
layer and isolation at the data and information layer [29]. Docker
is one the commonly used container run-time platforms adapted
by the CNCF and widely used throughout software communities.

Container orchestration comes into action as systems grow
in the number of containers and communication and connectivity
between them gains complexity. Orchestration tools mainly man-
age lifecycles of containerised applications, horizontal scalability
and replications of containers as well as vertical scalability and
resource management. Platforms like Docker Swarm [9], Open-
Shift [22] and Kubernetes [13] are amongst the most commonly
used orchestration platforms. Resource management, scalability-to-
zero and GPU/TPU [19] adoption enabled the ML industry to use
orchestration platforms as main drivers of ML applications.

Kubernetes works on top of a descriptive configuration man-
agement system to control resources across multiple server nodes
inside an internal network topology. Resources are building blocks
of the Kubernetes ecosystem as they communicate with the Kubelet
to provision, manage and control containerized applications using
CRI-O. Kubelet, by managing the smallest computational units,
Pods, structure higher-order complex Deployment in a way that
each building block share storage and network resources. Deploy-
ments can then replicate copies of Pods for horizontal scaling and
managing network routing policies between each deployment. As
resource consumption increases with new Deployments and Pods,
Kubelet plays a significant role in managing the compute resources
and provisioning new Nodes into the Kubernetes Cluster. Kubelet
enables Kubernetes clusters to vertically scale while it preserves
network sanity and controls pods and deployment lifecycles.

By defining node-affinity configuration, we can allocate custom
computational machines to a target deployment. Using node-affinity
will enable us to mitigate GPU powered Nodes managed by the
Kubernetes cluster. As these nodes follow the scalability principles
of Kubelet, they also allow large scale distributed training over
multiple GPUs and TPUs both at the inference and training layer.
Self-management, auto-scalability, scale-to-zero and custom Node
creation make Kubernetes a key role player in the feature of ML.

https://github.com/maminio/mlc.git

Reproducible Model Sharing for Al Practitioners

DIDL ’21, December 6, 2021, Virtual Event, Canada

[Deploy Models]
AN N
Affinity CRUD . Dispatch
Auth Check Deploy Init Dacker | e kar F:‘mieel] Model gggattes
-
o
i
8| | minoe S ‘bu,] N
B - Install Dependencies Dispatch
3 OPENFRRS Deployer
@ Inference Models I
o
5 AN Worker Executor
Validate
Deploy Queue Dispatch Container [Scale Nodes] [Deploy,'Run Openfaas]
Auth || Check || Job Job Update
Dispatch Job

Figure 1: MLC main architecture and data flow. Each request is asynchronously dispatched throughout the micro-service
implementation to reduce processing bottlenecks and enable scalability.

Service-Mesh and network topology come into action as con-
tainerised application deduce dependency on one another in form
of communications over different network protocols. As systems
grow in complexity and increase in dependency on third-party ser-
vices, communication plays a crucial role in maintaining security,
performance and discoverability of various services across a system.
The Service-mesh application layer allows individual self-contained
software in a micro-service architecture [26] to have clear visibility
to other members of the system while preserving and controlling
information transfer inside a cluster of containers. Orchestration
platforms create a local cluster networking which allocates internal
IP addresses for each entity of the system. Service-mesh applica-
tions like Istio [16], Consul [14] and Linkerd [21] accommodate on
top of this internal network and provide DNS management and ser-
vice discoverability, network security and load balancing between
services. A service-mesh plays a crucial role in network scalability
and reliable communication between entities in an orchestration
platform. Istio is a service mesh that brings advanced traffic manage-
ment and observability features and the ability to centrally decide
on security policies and rate limitations for the entities in a mesh.
By injecting a high-performance Envoy proxy containers to each
pod as a Sidecar, Istio can manage inbound and outbound traffic at
the POD level. In addition, by enabling mutual TLS, Istio provides
an extra security layer over the internal service mesh connections.
For MLC, we enable Istio and its security features.

Asynchronous micro-service architecture is a way of dis-
tributing communication between building blocks of a system so
that each entity gains autonomy and reduction in dependencies at
the communication layer. By transporting a cluster’s incoming re-
quest into a messaging bus like NATS [6], Kafka [2] or RabbitMQ [3],
we can distribute a request payload to multiple micro-services
without creating network bottlenecks. Compared to traditional
request-response communication, async communication allows us
to run long-running tasks without overhead on the service mesh
as requests no longer need to wait for a response. This commu-
nication method enables the ML training process or inference to

act as an individual, self-contained service in our application layer.
Using Kubernetes as service orchestration along with asynchro-
nous micro-service architecture, we can allocate computational
resources to isolated and dependency-free ML services without
creating network and communication bottlenecks.

Model Serving and inference is a technique where the ML
trained model output is served as an API endpoint to perform pre-
diction, data generation or data transformation. By taking snapshot
and storing the final state of an ML training process with all the
parameters and leveraging inference-servers like TensorflowServe
or ad-hoc execution, we can host ML models. This method perfectly
fits into the Micro-Service architecture on top of a Kubernetes
cluster. The async-communication handles the long-running in-
ference process over Istio service mesh to preserve security and
discoverability. Kubernetes resource allocation policies manage
the heavy-duty tasks and resource-hungry ML models. All this is
maintained across a cost-efficient, scalable platform.

3 DESIGN AND IMPLEMENTATION

High-performance ML serving on Cloud platforms like GCP and
AWS has much complexity and requires maintainability and cloud
expertise to be deployed. This complexity has created a barrier for
the research community to take advantage of these services for
more straightforward use cases like sharing models for research
conferences and reproducibility at the inferential level. MLC tackles
the maintenance and implementation complexity, focusing on zero-
dependency on Cloud Providers and is deployable on on-premise
institutional infrastructures, as well as public/private clouds.

This section will explain our platform’s backbone and how con-
tainerised ML applications can perform as standalone API endpoints
that will use lightweight container schedulers over an asynchronous
communication channel. Our platform enables a layer of privacy
to researchers source code and a trained model.

DIDL 21, December 6, 2021, Virtual Event, Canada

3.1 Main Architecture

MLC is designed on top of Kubernetes with micro-service design
patterns, communicating over Kafka message broker behind Istio
Service Mesh. Istio provides an ingress gateway for incoming traffic
and reroutes the appropriate services using the Virtual Service
resources. Figure 1 presents the main architecture of MLC.

API and Run are the two main micro-services processing in-
coming requests from Virtual Services. The API micro-service is
responsible for managing the Authentication of users and access
management of deployments. It also manages to create new Infer-
ence deployments and the containerised ML model’s build process’s
lifecycle. The Run micro-service handles the execution of ML mod-
els over a distributed container-as-a-function service.

As our primary objective is to reduce dependency on cloud plat-
forms, MLC provides a container registry for hosting deployed
ML containers and Minio FileStorage Services similar to AWS S3,
which enables researchers to upload source codes and supplemen-
tary artefacts of ML models. As the primary database, we use a
self-managed stateful deployment of MongoDB which satisfy the
simple purpose of storing the list of the deployed services and their
history of execution with regard to each authorised user. We use
OpenFaa$ as our main container execution engine to control ML
models over API endpoints. OpenFaasS is lightweight compared to
KNative and a similar platform, making it the perfect candidate for
our implementation.

3.2 DataFlow

Each deployment is a trained model + source code with a unique
name across the platform as a convention. Deployment configu-
rations can be stored in JSON or YAML format and must contain
the model’s execution process. The execution process is defined
with an ad-hoc method similar to the testing process of ML mod-
els. This means researchers can use the same source code with
minor changes to read incoming data and perform inference. The
deployment configuration file contains the test module file path,
which can be of any type (.py, .r, .) and a result destination
where the model’s output will be stored. Figure 2 shows a sample
configuration file for a CycleGAN [31] model, which takes a python
file as the inference entry point along with several execution flags.

MLC model configuration file was designed with at most flex-
ibility in mind to enable researchers use a variety of models and
frameworks. It supports multiple package managers, ML frame-
works and custom commands and flags for dynamic configuration.
Although we showcase that most ML models can be deployed for
inference without any changes, there are cases where researchers
must adapt their inference to fit MLC model.

In general we divide inference workloads based on their input
type in two main categories. Models that require run-time config-
urations and environment variables like GPT-2 where the model
generates text based on the input data from a run-time flag and
models that require external files like CycleGAN where they pro-
cess an image and generate a new image as output. By filling in a
model run-time specifications into the YAML configuration file and
using MLC’s CLI tool, researchers can deploy models and interact
with inference configuration.

Amin Moradi and Alexandru Uta

00O

name: "snow-gan"
language: "python-2.7"
framework: "tensorflow"
description: "A very nice project"
version: 1.1.0
model:
fileType: ".zip"
path: "source-code/snow-gan"
exec_cmd: ""
command: "bash activateEnvAtoB.sh"
output:
path: "./results/snow-cycle-gan/test_latest/images/"
type: "png"
input:
type: "download"
download_destination: "./datasets/testA/image.jpg"

package:
type: "conda"
requirements_file: "./requirements.txt"

Figure 2: A sample YAML configuration file for CycleGAN
model.

Run-time

Store in
Configs B

GPT-2 STDOUT —> Dl
MLC
Inference

— Upload to
File —> Storage
Service

File-input | CycleGAN

Figure 3: A breakdown of input and output for deployed
MLC models.

Moreover, as depicted in Figure 3, supports multiple input and
output types, such as file and runtime configuration inputs. Regard-
ing outputs, MLC is able to save stdout to a database and simply
list it to the user in the web interface, or upload the output to the
MinlO storage service, or even AWS S3.

3.3 Container build

One of the main challenges and bottlenecks in the deployment
process of models is installing package requirements and external
dependencies for a new container. Our high-level configuration
YAML file provides a self-contained and fully maintainable descrip-
tion of how external dependencies must be installed. Researchers
can set requirements.txt file path, and the MLC deployment pro-
cess will automatically install them upon building the inference
containers.

One of the most common methods to manage external depen-
dencies for each container is to build and create a new container
on each deployment. As MLC entirely runs on Kubernetes and
Docker containers, this method adds a bottleneck to the deploy-
ment process. Building Docker containers inside docker containers
has always been a challenge, and solutions like Kaniko by Google
Cloud have added savvier improvements to this issue.

Reproducible Model Sharing for Al Practitioners

DIDL ’21, December 6, 2021, Virtual Event, Canada

Table 2: CycleGAN model build time and one update iteration in dependency files. In the MLC method we incrementally add
new packages in-comparison to installing them again at build time.

Method | First Build time (s) ‘ Upload time (s) ‘ Second Build time (s) ‘ Avg Node CPU load

Kaniko 966 41.6
Local 210 41.6
MLC 104 5

Although Kaniko initially will solve most of the problems in
building containers in containers on Kubernetes, it takes a very
long time compared to building them locally. To accelerate our
deployment lifecycle of ML models, we created a base optimised
ML container. It will install required packages and all external
dependencies and eventually notifies the API service to commit the
container with all the installed requirements. Our method improved
the time taken by build process by a factor of 5, as depicted in
Table 2. Although fast container building is not a critical feature for
reproducibility tools like MLC, we believe that the ability to build
containers faster is an important feature toward user adoption.

4 EXPERIMENTS

We demonstrate a series of experiments on the MLC platform. Our
main objective in designing MLC was to provide a set of solutions
for practitioners and Al conferences to share and showcase models
without the complexity of ML inference platforms like KF-Service,
KubeFlow and Polyaxon.

We performed our experiments on three different models to
diversify our results based on the size of containers and computation
required for each inference. The three models we use to exemplify
our MLC platform are the widely used ResNet [12], CycleGAN [1]
(a variation of GAN), and GPT-2 [25]. Given the large differences
between these three models and their wide-range deployment and
use in the community, we believe they are sufficient for showing
the capabilities of MLC.

As models consume a wide range of computational resources and
the run-time of each deployed container is based on the complex-
ity and internal computation, in our experiments, we focused on
elasticity and boot-up of our deployments. We ran our experiments
on a three-node Kubernetes cluster on Google Kubernetes Engine
(GKE) v1.18.17. To manage third-party services and dependencies
we used Helm [17] and Terraform [15] to increase reproducibility
and maintenance.

4.1 Cold Start

Some of the known challenges in container-as-a-function platforms
are the scale-to-zero and cold-start of containers problems. ML
containers consist of several run-time packages and the trained
model; this means they are usually large in size compared to web-
based containers and it takes longer to scale them horizontally.

In Figure 4, we demonstrate our results when we execute in-
ference on scaled-to-zero models. OpenFaaS provides a built-in
queue-worker that is responsible for caching and scaling down of
containers. As deployed model have a similar CRD to Kubernetes
PODs, they are almost always in the warm state. The results show
that the performance penalty of cold starts is not severe, being
smaller than 500 ms. We believe this is good enough performance

966 80%
210 80%
10 35%

Container cold start

7569

5155 Cycle-GAN

Container Size(MB)

3480

0 100 200 300 400 500
Timestamp (ms)

Figure 4: A comparison between three models in scaling
from zero to one deployment. GPT-2 with the largest (7GB)
size and more RAM consumption take longer than ResNet-

56 and CycleGAN model.
Table 3: An overall run-time comparison of three large Deep

Neural Network Models deployed on a single Kubernetes
node. Avg over 10 runs.

Container Avg.
Model ‘ Size (MB) | Runtime (s) ‘ RAM (MB) | vCPU
GPT-2 7,569 3.86 800 4
Cycle-GAN 5,155 2.33 800 4
ResNet-56 3,480 0.89 600 4

for platform whose main purpose is models sharing and repro-
ducibility and not high-performance, low-latency inference serving.
However, even for such a case, these numbers are still competitive,
as cold-starts in containerized environments are typically higher,
even in the order of seconds for several use-cases.

4.2 Run-time

To examine the performance of MLC, we performed ten inference
runs for each model; all deployed on one Kubernetes node with 2GB
of RAM and 4 vCPUs. Our results in Table 3 shows MLC platform
can run inference on models as big as GPT-2 with 5GB of trained
weights and store the data securely in MLC database in less than 4
seconds. We consider this sufficiently performant for the purposes
of model sharing and reproducibility. However, with larger models
and GPU-based inference, it is trivial to make use of scaled-up
containers.

DIDL 21, December 6, 2021, Virtual Event, Canada

Table 4: Resource consumption comparison of ML inference
platforms. MLC requires less RAM and CPU to host ML mod-
els.

Platform ‘ Base 2o | Min. Nodes | Min. RAM ‘ Min. vCPU ‘ Auto 1?:3:61
KFService 21 3 4GB 4 Yes
KubeFlow 17 3 4GB 4 -
MLC 8 1 2GB 4 Yes

4.3 Comparison with Containerized Inference
Platforms

In recent years, Cloud Native Computing Foundation (CNCF) ML
practitioners take advantage of platforms like Kubernetes for man-
aging ML applications at scale. Platforms like KNative provide
automation, security, and discoverability on a single ecosystem by
providing multiple application layers. KFServing and KubeFlow are
two of the leading ML platforms for serving models on Kubernetes,
which are both based on KNative. Although KNative provides a
fully managed platform, it requires more RAM and CPU on each
Node. As both platforms are designed to support a wide range
of models and deployments, they have more complexity for non-
cloud-engineers. Table 4 shows an overall comparison of MLC with
KF-Serving and Kubeflow in terms of resource consumption and
complexity. We believe that the reduced resource consumption and
overall much reduced complexity of used make MLC a prime can-
didate for the adoption toward model sharing for reproducibility
purposes by the Al and ML communities at large.

5 CONCLUSION

Machine Learning and Al research are moving faster than ever but
reproducing novel proposed results is limited by computational
resources and software complexity. Some of these challenges are
being addressed by containerized environments and sharing of data
and code. However, this is insufficient and sometimes infeasible.
Today, with the emergence of more extensive and deeper networks,
we are experiencing reproducibility challenges which can be solved
by seamless model sharing, thus enabling fast inference for practi-
tioners who need to quickly prototype or test a new model. In this
work, we implemented a model sharing platform to improve the
inference reproducibility of ML models for practitioners, confer-
ences, and the AI/ML research communities at large. We designed
MLC to run on institutional or cloud infrastructure with the least
amount of maintenance required. Our experiments show, compared
to similar platforms, that MLC requires less compute resources and
simpler deployment of ML models with our interactive CLI. Using
MLC, researchers and practitioners can share ML models without
sharing source code or the trained model itself. MLC also helps the
industry to adapt and test the latest research contributions on their
products.

ACKNOWLEDGEMENTS

The work in this article was in part supported by The Dutch Na-
tional Science Foundation NWO Veni grant V1.202.195.

Amin Moradi and Alexandru Uta

REFERENCES

[1] Amjad Almahairi, Sai Rajeshwar, Alessandro Sordoni, Philip Bachman, and Aaron
Courville. 2018. Augmented cyclegan: Learning many-to-many mappings from
unpaired data. In International Conference on Machine Learning. PMLR, 195-204.

[2] Apache. 2021. Distributed event streaming platform. https://kafka.apache.org

[3] Apache. 2021. Lightweight message broker. https://www.rabbitmq.com

[4] Ekaba Bisong. 2019. Kubeflow and Kubeflow Pipelines. Apress, Berkeley, CA,
671-685. https://doi.org/10.1007/978-1-4842-4470-8_46

[5] Tom B. Brown et al. 2020. Language Models are Few-Shot Learners.
arXiv:2005.14165 [cs.CL]

[6] NATS CNCF. 2021. Connective Technology for Adaptive Edge Distributed Systems.
https://nats.io

[7] Clive Cox, Dan Sun, Ellis Tarn, Animesh Singh, Rakesh Kelkar, and David Good-
win. 2020. Serverless inferencing on Kubernetes. arXiv:2007.07366 [cs.DC]

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv:1810.04805 [cs.CL]

[9] Docker. 2021. Docker. https://docker.com

[10] Grigori Fursin. 2021. Collective knowledge: organizing research projects as a data-
base of reusable components and portable workflows with common interfaces.
Philosophical Transactions of the Royal Society A 379, 2197 (2021), 20200211.

[11] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative

Adversarial Networks. arXiv:1406.2661 [stat.ML]

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition. 770-778.

[13] Google Inc. 2021. Kubernetes. https://kubernetes.io

[14] Hashicorp Inc. 2021. Hashicorp Consul. https://www.consul.io

[15] Hashicorp Inc. 2021. Terrform infrastructure as code software. https://www.
terraform.io

[16] Istio Inc. 2021. Istio. https://istio.io

[17] Microsoft Inc. 2021. Helm, Package manager for kubernetes. https://helm.sh

[18] Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski. 2018. Serving
deep learning models in a serverless platform. arXiv:1710.08460 [cs.DC]

[19] Norman P. Jouppi, , et al. 2017. In-Datacenter Performance Analysis of a Tensor

Processing Unit. In Proceedings of the 44th Annual International Symposium on

Computer Architecture (Toronto, ON, Canada) (ISCA ’17). Association for Com-

puting Machinery, New York, NY, USA, 1-12. https://doi.org/10.1145/3079856.

3080246

] Yuxi Li. 2018. Deep Reinforcement Learning. arXiv:1810.06339 [cs.LG]

] Linkerd. 2021. Linkerd. https://linkerd.io

22] OpenShift. 2021. OpenShift. https://www.openshift.com

] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia,

Daniel Rothchild, David So, Maud Texier, and Jeff Dean. 2021. Carbon Emissions

and Large Neural Network Training. arXiv preprint arXiv:2104.10350 (2021).

[24] Polyaxon. 2021. Polyaxon. https://polyaxon.com

[25] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language Models are Unsupervised Multitask Learners. (2019).

[26] Ozair Sheikh, Serjik Dikaleh, Dharmesh Mistry, Darren Pape, and Chris Felix.
2018. Modernize Digital Applications with Microservices Management Using
the Istio Service Mesh. In Proceedings of the 28th Annual International Confer-
ence on Computer Science and Software Engineering (Markham, Ontario, Canada)
(CASCON °18). IBM Corp., USA, 359-360.

[27] Emma Strubell, Ananya Ganesh, and Andrew McCallum. 2020. Energy and policy

considerations for modern deep learning research. In Proceedings of the AAAI

Conference on Artificial Intelligence, Vol. 34. 13693-13696.

David Tran, Alex Valtchanov, Keshav Ganapathy, Raymond Feng, Eric Slud,

Micah Goldblum, and Tom Goldstein. 2020. Analyzing the Machine Learning

Conference Review Process. arXiv:2011.12919 [cs.LG]

[29] Ana Trisovic, Philip Durbin, Tania Schlatter, Gustavo Durand, Sonia Barbosa,

Danny Brooke, and Mercé Crosas. 2020. Advancing Computational Reproducibil-

ity in the Dataverse Data Repository Platform. In Proceedings of the 3rd Inter-
national Workshop on Practical Reproducible Evaluation of Computer Systems

(Stockholm, Sweden) (P-RECS °20). Association for Computing Machinery, New

York, NY, USA, 15-20. https://doi.org/10.1145/3391800.3398173

Alexandru Uta, Alexandru Custura, Dmitry Duplyakin, Ivo Jimenez, Jan Reller-

meyer, Carlos Maltzahn, Robert Ricci, and Alexandru Iosup. 2020. Is big data
performance reproducible in modern cloud networks?. In 17th {USENIX} Sym-

posium on Networked Systems Design and Implementation ({NSDI} 20). 513-527.

[31] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. 2020. Un-
paired Image-to-Image Translation using Cycle-Consistent Adversarial Networks.
arXiv:1703.10593 [cs.CV]

=
&N

[28

[30

https://kafka.apache.org
https://www.rabbitmq.com
https://doi.org/10.1007/978-1-4842-4470-8_46
https://arxiv.org/abs/2005.14165
https://nats.io
https://arxiv.org/abs/2007.07366
https://arxiv.org/abs/1810.04805
https://docker.com
https://arxiv.org/abs/1406.2661
https://kubernetes.io
https://www.consul.io
https://www.terraform.io
https://www.terraform.io
https://istio.io
https://helm.sh
https://arxiv.org/abs/1710.08460
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://arxiv.org/abs/1810.06339
https://linkerd.io
https://www.openshift.com
https://polyaxon.com
https://arxiv.org/abs/2011.12919
https://doi.org/10.1145/3391800.3398173
https://arxiv.org/abs/1703.10593

	Abstract
	1 Introduction
	2 Background
	3 Design and Implementation
	3.1 Main Architecture
	3.2 Data Flow
	3.3 Container build

	4 Experiments
	4.1 Cold Start
	4.2 Run-time
	4.3 Comparison with Containerized Inference Platforms

	5 Conclusion
	References

