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Abstract

Scientific domains such as astronomy or bioinformatics produce increasingly large amounts of data that need to be
analyzed. Such analyses are modeled as scientific workflows - applications composed of many individual tasks that
exhibit data dependencies. Typically, these applications suffer from significant variability in the interplay between
achieved parallelism and data footprint. To efficiently tackle the data deluge, cost effective solutions need to be de-
ployed by extending private computing infrastructures with public cloud resources. To achieve this, two key features
for such systems need to be addressed: elasticity and network adaptability. The former improves compute resource
utilization efficiency, while the latter improves network utilization efficiency, since public clouds suffer from signifi-
cant bandwidth variability. This paper extends our previous work on MemEFS, an in-memory elastic distributed file
system by adding network adaptability. Our results show that MemEFS’ elasticity increases the resource utilization
efficiency by up to 65%. Regarding the network adaptation policy, MemEFS achieves up to 50% speedup compared
to its network-agnostic counterpart.

Keywords: in-memory file system, distributed hashing, elasticity, scalable computing, network variability, network
adaptation, high-performance I/O, large-scale scientific computing, big data and HPC systems, big data for
e-Science, large-scale systems for computational sciences

1. Introduction

An important direction of eScience research fo-
cuses on efficiently running scientific workflows. These
computations are typically composed of many data-
intensive tasks, spanning multiple domains, such as as-
tronomy [1] and bioinformatics [2]. Such workflows of-
ten express inter-task dependencies by means of files
(i.e. the output of one task is the input of another),
containing (intermediary) data, generated at runtime. In
contrast to traditional message passing mechanisms [3],
this communication scheme requires a shared, often dis-
tributed, file system. However, data-intensive scien-
tific workflows generate large data amounts, which can-

∗Corresponding author
Email addresses: a.uta@vu.nl (Alexandru Uta),

o.a.danner@student.vu.nl (Ove Danner),
c.vander.weegen@student.vu.nl (Cas van der Weegen),
a.m.oprescu@vu.nl (Ana-Maria Oprescu), a.sandu@vu.nl
(Andreea Sandu), s.v.costache@vu.nl (Stefania Costache),
thilo.kielmann@vu.nl (Thilo Kielmann)

not be efficiently handled by traditional, disk-based dis-
tributed file systems, thus leading to limited application
performance and scalability.

To alleviate the storage bottleneck, the state-of-the-
art [4, 5] suggests using in-memory runtime distributed
file systems. Such systems either use a locality-based
approach [4] or are locality agnostic [6, 5]. These so-
lutions expose the compute nodes’ memories as a fast,
unified, distributed cache, that optimizes accesses to
runtime-generated data. However, as in-memory run-
time distributed file systems are typically statically de-
ployed onto a fixed number of compute nodes, their ap-
plicability and efficiency are limited. For instance, the
user would be faced with the difficult task of estimat-
ing the storage demands of the application. An under-
estimation would lead to poor performance (as the sys-
tem would start swapping), or even to crashing, while an
over-estimation would lead to poor resource utilization.

Furthermore, scientific workflows exhibit significant
variability in the data footprint and in the achieved par-
allelism [7]. The former is determined by two aspects:
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(i) data-intensive parallel stages generate large amounts
of data; (ii) intermediary runtime generated data can be
discarded when it is no longer needed. The latter oc-
curs as a result of the mix of large parallel stages with
sequential synchronization points, e.g., data aggrega-
tion, data partitioning stages. Clearly, a static deploy-
ment scheme needs to over-provision resources to ac-
commodate for peak storage demands of the applica-
tion. In shared clusters, such a behavior translates to
longer queuing times for users - resources are need-
lessly reserved, and/or inefficient energy consumption
- assuming idle machines could be powered off.

Ideally, an elastic in-memory runtime distributed file
system would acquire and release resources according
to application demands, thus offering more flexibility.
A direct benefit of an elastic in-memory storage is that
the user can rely on the system to determine the (near-)
optimal number of nodes that an application needs for
storing its runtime data. Also, nodes could be added or
removed on-demand, during runtime.

Limiting the elastic approach to private computing in-
frastructure capacity, however, is ill-suited for the rapid
increase in the data volumes produced by typical sci-
entific applications [8]. Ideally, the private comput-
ing infrastructure would be augmented by means of on-
demand, public cloud resources.

Here, a new type of problem appears: in contrast to
private computing infrastructure, many studies [9, 10]
point out that in public clouds the network performance
is impacted by large degrees of variability - due to virtu-
alization, colocation and congestion overheads [11, 12].

This paper introduces a data distribution policy pro-
portional to network capabilities that aims to better
utilize compute and network resources. The key in-
sight of the proportional policy is that the interplay be-
tween compute-to-storage ratio and available bandwidth
highly impacts the overall system performance. We im-
plement this policy in MemEFS, our locality-agnostic
in-memory elastic storage system [6, 5]. Unlike static
deployment schemes, MemEFS is able to adapt to its
current network infrastructure and to scale dynamically,
at runtime, based on the application storage demands.
The contributions of this paper are the following:

• We introduce a network-aware mechanism that en-
ables MemEFS to seamlessly access resources lo-
cated across networks without bandwidth guaran-
tees.

• We revisit the design of MemEFS, our elastic in-
memory runtime storage system [13], with a focus
on the network-aware data distribution policy.

• We introduce a hot-migration scheme for the
MemEFS reconfiguration process that greatly im-
proves the application blocking time;

• We evaluate MemEFS with a variety of real-world
and synthetic scientific workflows. We show the
efficiency of our design through a set of elastic
scaling policies derived from the application stor-
age demand.

Our results show that MemEFS’ elasticity improves
resource utilization (by up to 65%), while incurring only
a modest performance overhead. Our design allows
users to trade off resource efficiency for performance.
MemEFS’ network adaptability mechanism reduces ex-
ecution time by up to 50%.

This paper is organized as follows. Section 2 sketches
the background of our work, while Section 3 introduces
the design of MemEFS. Section 4 describes the evalu-
ation results, Section 5 discusses related work and we
draw conclusions in Section 6.

2. Background

In previous work [5, 6] we designed MemFS, an in-
memory distributed file system for storing the inter-
mediate data of scientific workflows. MemFS is de-
ployed on the nodes on which the application is run-
ning and spreads the application data uniformly across
these nodes. We showed that, since remote operations
have become faster due to increasing network band-
width and DRAM capacities, a locality-agnostic ap-
proach achieves better performance for scientific work-
flows than state of the art locality-based file systems [6].

MemFS improves the performance of scientific work-
flows through two important features: (i) it achieves a
good load balance for both storage and network traf-
fic, thus avoiding scalability bottlenecks when running
data aggregation and partitioning stages; (ii) it maxi-
mizes the achieved bandwidth and throughput for read
and write operations. MemFS balances the storage
load among the nodes by employing a key-value store.
Files are striped and each stripe is associated with a
key. The node which stores a file stripe is selected
by hashing the stripe’s key. MemFS uses a modulo
hashing scheme, which assigns each stripe to a node
in a logical ring, guaranteeing a balanced data distri-
bution. MemFS’s file striping mechanism also enables
improved read and write throughput by transferring data
via parallel streams from multiple nodes.

MemFS is designed to run on tightly coupled, reliable
compute resources, such as clusters or supercomputers.
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Hence, all-to-all connectivity is ensured and, each node
has membership information about all other nodes. This
minimizes latency by enabling O(1) file look-up and
alleviating the need of additional routing. In environ-
ments where nodes join and leave the system at very
high rates, such a low complexity would not be possi-
ble. As it would be too expensive for every node to keep
a full view of the network, only a partial view is used:
nodes use routing tables when directing queries, leading
to a complexity of O(log n) for look-up operations.

MemFS’s implementation is based on three compo-
nents: (1) a FUSE [14] layer that serves as a POSIX in-
terface to applications and which handles the file strip-
ing mechanism; (2) the Libmemcached [15] hashing
protocol which determines in O(1) steps which node
holds a certain file stripe; and (3) Memcached [16], a
fast, in-memory key-value data store.

2.1. Elasticity Requirements
Current in-memory file systems, like MemFS, lack

support for adapting their number of nodes to applica-
tion storage needs, although scientific workflows often
have varying storage demands during their runtime. The
astronomy workflow, Montage [1], for exmple, is build-
ing a mosaic from a set of galaxy images. Montage is
composed of a series of stages, each generating different
data amounts. Some of Montage’s stages are parallel,
e.g., composed of thousands of tasks, while others are
sequential. Moreover, in Montage, as most of the stages
depend only on the data from the previous stage, a part
of the runtime data can be deleted by the workflow man-
ager [17], to optimize the total data storage used by the
workflow.

Figure 1 shows the variations in utilized data storage
during a run of Montage using MemFS (we discard the
data that is no longer needed at the end of each stage).
If we would have to run Montage on a static number of
nodes, we would have to provision for the peak memory
utilization (marked as red). Not only would we have
to know this peak value before starting Montage, but
also, due to varying parallelism levels and data footprint
in Montage stages, resources will be left unused while
other users might have applications waiting in the clus-
ter’s queue.

Adding elasticity to a file system like MemFS in-
volves designing new data distribution and load balanc-
ing mechanisms. The key problem is that maintaining
the load balance when adding/removing nodes implies
moving data among the nodes. As previously shown
with MemFS, load balancing can be efficiently achieved
by striping files and using a key-value store to store the
file stripes. However, adding or removing nodes leads
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Figure 1: The in-memory storage demand of a scientific workflow
during its runtime. Note the difference between the used storage and
the allocated amount to satisfy the peak demand.

to changing the hash function and thus it invalidates the
assignment of stripe keys to nodes.

The motivation for this behaviour stems from the
hashing mechanism inherent design and purpose: hash
functions map objects (stripe keys) to a fixed number
of containers (nodes). A good hash function should
achieve a load-balanced distribution of objects to con-
tainers. When the number of containers changes, the
hash function needs to change (to take into account
the newly added/removed containers), as otherwise, the
mapping of objects to containers will be invalidated
(i.e., objects will not be found).

As nodes are added or removed, not only the hash
function needs to be changed, but also objects need to
be migrated to the containers where the new hashing
function would map them.

The movement of data during reconfigurations de-
grades the application performance, as application I/O
has to be postponed until the reconfiguration has fin-
ished. To reduce the application performance degrada-
tion, the amount of data migrated among nodes needs to
be minimized.

In this paper, we leverage the key results of MemFS
to design MemEFS, an elastic in-memory distributed
file system. MemEFS improves MemFS through: (i)
efficient mechanisms to store and re-distribute the data
when adding/removing nodes; (ii) elastic scaling poli-
cies to adapt the number of nodes to variations in appli-
cation storage demand.

2.2. Network adaptation requirements

With a highly distributed design, file systems like
MemFS are not robust to network variability. While in
a private infrastructure setup this aspect is downplayed
by the intrinsic performance isolation of the execution
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Figure 2: Bandwidth distributions for A-H cloud use cases. 1st-25th-
50th-75th-99th percentiles. Data points courtesy of authors of [10].

environment, the situation is radically different in pub-
lic clouds. Figure 2 plots the results of an exhaustive
study [10] which showed that the network performance
is highly variable in public clouds. Such an imbalance
in the bandwidth observed by MemFS nodes would lead
to a general slowdown of the system, as faster connected
nodes will be reduced to the speed of the slower con-
nected ones.

Thus, adding network adaptability to a file system
like MemFS also affects the design of its data distri-
bution and load balancing mechanisms. In this paper,
we introduce a network-aware data distribution policy
in the design of MemEFS.

3. MemEFS Design and Implementation

Figure 3 shows an overview of MemEFS, consisting
of worker nodes and a Central Manager (CM). The CM
gathers worker node statistics, takes reconfiguration de-
cisions based on these statistics and orchestrates the re-
configurations. The worker nodes run a File System
Client, a Local Manager and the application processes.
The Local Manager monitors the node’s resource statis-
tics, e.g., memory utilization, and sends it to the CM.
The CM may run on a separate node, but it can also
reside on a worker node without affecting the worker’s
performance. An important remark is that in MemEFS
the worker nodes have a dual role: they participate in
both storing data and running applications.

When worker nodes are added or removed, MemEFS
needs to move data to maintain the load balance. To
minimize the data movement, and thus maintain appli-
cation performance, MemEFS uses a consistent hashing
scheme [18]. This guarantees that in a system that holds

Figure 3: Architecture of MemEFS.

K objects on N nodes, when a node is added, at most
O(K/N) objects need to be rehashed.

MemEFS implements consistent hashing through a
two-layer hashing scheme that maps file stripes to par-
titions and then partitions to nodes. We assume it
is preferable to organize data in a manner that per-
mits moving small numbers of large objects (partitions)
rather than large numbers of small objects (file stripes).
Better performance is achieved when transferring larger
objects since fewer data transfers are needed, and hence
we minimize the latency and maximize the bandwidth
utilization. With this argument in mind, each node holds
multiple partitions, such that, when reconfiguring the
file system, we migrate partitions, and thus avoid re-
hashing the file stripes.

Throughout the application runtime, the number of
partitions is constant. The total number of partitions
sets the upper bound on the number of nodes to which
the elastic distributed file system can scale out to: there
cannot be more nodes than partitions. Therefore, the
size of each partition is limited by the memory capacity
of its host node. Thus, when running on a small number
of nodes with many partitions, the partition size will be
small. When scaling out to a larger number of nodes,
a subset of the partitions will be migrated to the newly
added nodes, allowing all the partitions to grow in size.
The growing or shrinking of partitions is dependent on
the application behaviour: if the application writes more
data, the number of file stripes per partition increases;
conversely, if the application removes data, file stripes
are deleted from the partition.
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3.1. Two-Layer Hashing Scheme

To store file stripes, MemEFS uses the two layer
hashing scheme as follows. The mapping of stripes to
partitions is achieved using the xxhash [19] algorithm.
This algorithm hashes an input string to a 64-bit num-
ber. We have chosen this non-cryptographic algorithm
because it is optimized for 64-bit CPUs, yielding up to
13GB/s throughput [19] and outperforming other hash-
ing algorithms like SHA1 [20] or MD5 [21] by two or-
ders of magnitude. This is important for MemEFS since
a fast hashing scheme reduces the latency of looking up
a file stripe. To determine the mapping of a stripe to a
partition, we hash the file path and the stripe number,
obtaining a 64-bit integer. We then use a modulo (circu-
lar) scheme to determine which partition holds the file
stripe.

The mapping of partitions to nodes is kept in a table,
called the Partition-Node table. This table is stored on
each node and it is updated by the CM at each recon-
figuration. Figure 3 shows the steps required to read
or write a file stripe: MemEFS first determines the id
of the partition responsible for the file stripe, then the
node responsible for the partition, and then the query
is sent directly to that node. Thus, MemEFS achieves
O(1) look-up for storing or retrieving file stripes.

3.2. Load Balancing

MemEFS computes the number of partitions each
node stores after each reconfiguration by adapting the
Y0 algorithm proposed in [22]. This algorithm com-
putes the mapping of partitions to nodes. However, the
mapping of file stripes to partitions is always constant:
once a file stripe has been assigned to a partition, it will
always reside there, even though the partition may be
migrated to different nodes.

Y0 improves on the Chord [23] DHT and achieves
good load balance, even when nodes are heterogeneous
in terms of storage. The load imbalance in Y0 was
shown to be a constant factor of at most 3.6, while
DHTs usually generate a load imbalance in the order
of O(log N).

The core idea of Y0 is as follows. Considering there
are n heterogeneous nodes, to achieve load balance,
each node v should own a fair share share(v) of the
storage capacity. This share is computed as the ratio
between the fraction of the storage assigned to node v
( fv) and the fraction of the total normalized capacity be-
longing to node v (cv/n):

share(v) =
fv

cv/n
(1)

The normalized capacity of node v is generically de-
fined as:

cv =
Capacity(v)∑
u∈Nodes Capacity(u)

n

(2)

and it is easy to verify that
∑

v∈Nodes cv = n.
The system is load balanced when each node’s share

is equal to 1 and therefore the fv values will determine
the system’s load balance. The authors show that, when
each node holds 2 log n partitions per capacity unit, the
system’s imbalance factor is at most 3.6.

To achieve load balance in MemEFS, we adapt the
Y0’s computation of nodes’ shares by defining the ca-
pacity of each node v in terms of memory:

cv =
Memory(v) × n∑

u∈Nodes Memory(u)
(3)

We also define the fraction of the storage assigned to
node v in terms of the number of partitions of node v
(Pv) compared to the total number of partitions in the
system, P =

∑
v∈Nodes Pv. Then, the share of node v

becomes:

share(v) =
Pv/P
cv/n

(4)

If there are n nodes initially in MemEFS, then there
are at most 2n log n partitions in total. Since Pv cannot
be smaller 1, it follows that MemEFS would not be able
to add more than 2n log n nodes to the system when
scaling out.

It has been shown [22] that a higher number of parti-
tions further reduces the imbalance factor. However, in
the case of Y0, a larger number of partitions per capacity
unit adds significant overhead to look-up operations due
to the size increase in the finger table. MemEFS is not
affected by this, as it delivers O(1) look-up operations.
Therefore, when defining the number of partitions of a
node, Pv, instead of using 2 log n partitions per capacity
unit, we introduce a scaling constant β, such that:

Pv = cvβ log n (5)

Through this scaling factor MemEFS gives users more
control in defining how much the system could scale
out, as the number of partitions determines the maxi-
mum number of nodes the system can scale out to. The
partitions are variable in size: when there are many on
a machine, they are smaller, but when scaling out, the
number of partitions on a machine decreases and they
are allowed to grow in size.
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3.3. Network Awareness
As typical private clusters have homogeneous net-

works, nodes of the same type receive the same number
of MemEFS partitions. In public clouds, when deal-
ing with highly heterogeneous links, we assume that it
is beneficial to distribute MemEFS partitions in such a
way that nodes with more bandwidth host more parti-
tions.

In a cloud setup, we start by measuring the available
bandwidth of the MemEFS virtual machines. Next, we
adapt again the Y0 algorithm to compute the numbers
of partitions per virtual machine according to the band-
width capacity. Equation 3 becomes:

cv =
Bandwidth(v) × n∑

u∈Nodes Bandwidth(u)
(6)

The network-aware Y0 algorithm uses the same princi-
ples described previously. In the cloud setup, only the
capacities of the nodes are now computed based on the
observed bandwidth of the nodes.

During the runtime of an application, MemEFS mon-
itors the available bandwidth of its nodes. If the band-
width capacity of a node changes, the Y0 algorithm is
re-run and the partition-to-node mapping is updated ac-
cordingly. Even though migrating data from a node with
low bandwidth may reduce performance momentarily,
by applying this technique we optimize for the long-
term behaviour of the system, as the application exe-
cution time is a-priori unknown.

It is important to note that the Y0 algorithm need not
consider the absolute (maximum) bandwidth of a node,
but actually its observed bandwidth, i.e., the amount of
network traffic generated by the application. This is suf-
ficient, as generally workflow tasks are uniform in their
resource requirements: tasks from the same stage ex-
hibit similar amounts of I/O, memory, CPU operations.
Therefore, in stages that exhibit low I/O, the network
bandwidth will be under-utilized in all nodes. Further-
more, this mechanism enables a simple procedure to de-
cide when a node’s bandwidth is maximized.

When the application increases its network traffic, the
nodes that exhibit lower bandwidth will not exhibit a
utilization past their actual physical limit. Conversely,
in nodes with higher bandwidth, the increase in utiliza-
tion will be higher. Therefore, in periods of high net-
work utilization, by analyzing the amount of increase in
observed bandwidth in each node, we can decide which
nodes are bandwidth-contended.

3.4. Initialization and Reconfiguration
Next, we discuss the steps required by MemEFS to

initialize and reconfigure itself.

3.4.1. File System Initialization
MemEFS starts with a node running the Central Man-

ager (CM). The CM process takes as input the number
of initial worker nodes and β (all experiments in this
paper use β = 4). Then, the CM starts the worker
nodes. Based on the underlying environment (cluster
or cloud), the CM creates the required numbers of parti-
tions on the worker nodes using the corresponding load
balancing scheme as introduced in Section 3.2 and 3.3,
respectively. Then, it creates the Partition-Node table
and broadcasts it to all worker nodes. When the worker
nodes receive this table, they also mount the File System
Client.

3.4.2. File System Reconfiguration
When an application is running, the Central Manager

queries all worker nodes for their memory utilization.
The time interval at which the queries are done is con-
figurable, with a default value of one second. Based on
memory utilization information, the file system recon-
figures itself automatically during application runtime
by adding or removing workers (nodes or virtual ma-
chines).

To start new nodes, in a cluster setup, the CM inter-
acts with the cluster queueing system. Conversely, in a
public cloud setup, the CM utilizes the cloud API, or a
library such as Apache Libcloud [24].

After the new workers have been started, or before
existing workers are removed, the CM determines how
many partitions have to be migrated and where, and re-
balances the workers. Node removal is possible when
the remaining set of nodes have enough memory to store
all the data. The CM removes a part of the current
nodes if the memory utilization over a certain time span,
e.g., 45 seconds, does not increase, and is below a given
threshold.

If (a part of) the newly added nodes are running in
a public cloud, the CM monitors their achieved band-
width over a (configurable) period of time. If there is
significant variability, the network-aware Y0 algorithm
is run, and the partitions are redistributed accordingly.

Because during reconfigurations the partition-to-
node mapping changes, any reads or writes issued by
the application would be invalid and thus, before recon-
figuration starts, the application I/O operations are sus-
pended. The I/O operations are resumed only after the
reconfiguration finishes, i.e., the data is migrated and
each node has the new partition-to-node mapping.

3.4.3. Elastic Scaling Policies
We designed several elastic scaling policies. The

policies can scale out or in the number of storage (also
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used for computation) nodes. By scaling out we denote
the process of adding nodes to the system. Conversely,
by scaling in we denote the process of removing nodes
from the system. The various combinations of these
policies lead to trade-offs between resource utilization
efficiency and workflow execution speed.

Our working assumption is that the system does not
have any prior knowledge of the applications. More-
over, scientific workflows are composed of sets of
highly heterogeneous tasks. The heterogeneity lies not
only in task runtimes, but also in CPU utilization, I/O
utilization and patterns, and output file sizes. There-
fore, to improve resource utilization, the only viable ap-
proach is to let the system be modeled by the application
data demand. In this way, we make sure that the appli-
cation uses only as many resources as needed.

For scaling out, we define three policies, ranging
from a conservative to an aggressive approach. If the
scaling out policy is more conservative, i.e., scales with
small number of nodes, the system would also benefit
from less compute resources, since in MemEFS the stor-
age is colocated with the compute nodes. Hence, the
more conservative the scaling out policy is, the higher
the application slowdown. These policies are summa-
rized as follows:

• CSO - Conservative Scale Out: assuming the sys-
tem starts with N nodes, we always scale out by
N
2 nodes when the total system utilization grows
higher than 95%.

• NSO - Neutral Scale Out: assuming the sys-
tem starts with N nodes, we always scale out by
N nodes when the total system utilization grows
higher than 95%.

• ASO - Aggressive Scale Out: we always double
the current number of system nodes when the total
system utilization grows higher than 95%.

For scaling in, we define two policies: conservative
and aggressive. The more aggressive the scaling in pol-
icy is, the higher the application slowdown. These poli-
cies are summarized as follows:

• CSI - Conservative Scale In: when the total system
utilization drops below 75%, we remove 25% of
the nodes.

• ASI - Aggressive Scale In: when the total system
utilization drops below 50%, we remove 50% of
the nodes.

The amount of data migrated depends on the nodes
that are added or removed. To be more precise, the

amount of migrated data is proportional to the capac-
ity units measured in the Y0 algorithm - either memory
capacity, or network bandwidth.

In a setup with homogeneous network links, each
node participates equally when storing the data. As in
our approach nodes are both storage and compute, when
X% new capacity units are added, X% data is migrated
to the newly added nodes. Also, according to previous
research [5], there is no need to minimize data migra-
tion further than achieving balanced storage, as balance
is key for performance. Furthermore, the Y0 consistent
hashing scheme ensures that the minimal amount of data
will be migrated, while preserving load balance.

With heterogeneous network capacities, our system
achieves a load balance proportional to the network
link capacities such that the overall computation is not
slowed down by the network imbalance.

When running in a cloud setup we choose nodes
which have similar characteristics (CPU, memory). In
typical commercial clouds, the amount of resources
are also correlated with the network capacities1. As
such, instances with large CPU and memory have higher
available bandwidth. The reciprocal is also valid.
Therefore, in cloud setups, we only have to cope with
the bandwidth variability (as all other resources are sim-
ilar), task which is performed by the network adaptation
mechanism.

In such setups, when node addition/removal is per-
formed, we compute the number of partitions per node
based on bandwidth capacities. If the newly added
nodes do not have enough bandwidth to free up some
nodes which have their memory filled up, we continue
adding nodes until enough partitions are redistributed
and the system can continue operation. A node would
have to exhibit several orders of magnitude lower band-
width (variability much larger than the cases presented
in Figure 2) for such situations to occur, which is highly
improbable in the cluster and cloud setups discussed in
this paper.

3.5. Implementation

We next describe several implementation decisions
for MemEFS. We discuss the data store choice, the com-
munication protocol between the Central Manager and
the workers, and the implementation of the file-system
client. Finally, we discuss how MemEFS could imple-
ment fault tolerance.

1https://aws.amazon.com/ec2/instance-types/
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3.5.1. Data Store
To store file stripes, MemEFS relies on existing key-

value data stores. However, an important feature re-
quired by MemEFS is to allow data partitioning and
partition migration among nodes. Originally, MemFS
used Memcached for storing data in memory. Because
in MemEFS we use the concept of partitions, and each
node might store multiple partitions, we could have
implemented the partitions as Memcached databases.
However, when reconfiguring the file system, there was
no mechanism for migrating a Memcached database be-
tween nodes. Therefore, in MemEFS we have opted to
use Redis as the key-value data store [25]; each partition
is a database managed by a Redis process.

Redis has several mechanisms to migrate databases
between nodes: (i) cold migration, i.e., dump the
database to a file and transfer the file to the new node;
(ii) master-slave replication (hot migration): we can ob-
tain a copy of the initial Redis process by setting the
new Redis process as its slave; after the replication has
finished, we can simply kill the original Redis process;
(iii) record a log to disk with all operations that have al-
tered the database; for migration the log can be copied
to the new node and replayed by the new Redis process.

MemEFS uses two mechanisms to move partitions
between nodes during reconfigurations:

1. Cold Migration: When the reconfiguration starts,
the application processes are stopped. Then, the
target Redis servers dump their databases to disk.
Afterwards, the dump is copied over the network
to the newly added node and the Redis process is
restarted using the database dump. Only after all
this tedious process has finished, the application
can be restarted.

2. Hot Migration: The newly added nodes are
started in advance with one Redis server running
as a slave that replicates the Redis server contents
of the original node. When the replication is close
to being finished (i.e. at 90%), the application is
blocked until the slave is an exact replica of the
master. After this finishes, the Redis master is
killed, the partition table updated to point to the
newly added Redis replica, and the application pro-
cesses are finally un-blocked.

While in the original implementation [13] MemEFS
used only a cold migration scheme, in this paper we
also implement the hot migration scheme. This scheme
greatly improves the running times of the applications
by employing shorter blocking times during the recon-
figuration process. The log-based mechanism of Re-
dis replication is not suitable, as it would increase the

blocking times even further than cold migration. This
is because usually log files are larger than the database
dumps, and replaying the log file might be more time
consuming than loading the dump file.

3.5.2. Communication between Central Manager and
Workers

Each worker node runs a Local Manager (LM) pro-
cess that communicates with the Central Manager. Fig-
ure 4 shows the communication protocol. The LM pro-
cess runs three threads. One thread measures the local
memory and bandwidth utilization at regular time in-
tervals; the time interval is configurable with a default
value of one second. The memory utilization is mon-
itored by checking how much memory is allocated by
the redis processes. To check the bandwidth utilization,
the LM constantly polls the /proc/net/dev file exposed
by the Linux Kernel and stores the amount of data that
had passed through the network interface. Assuming 1
second measuring intervals, the LM then computes the
bandwidth achieved by the node in the previous second.

A second thread sends the local memory and band-
width utilization information to the CM whenever this
information is requested. A third thread listens for re-
configuration messages.

When the Local Manager receives the message that
the reconfiguration should start, it first sends a signal
to the file system client (FS) to suspend application I/O
operations. After the FS acknowledges that the appli-
cation’s I/O operations have been suspended, the LM
sends an acknowledgment to the CM signaling that the
reconfiguration can take place. When the reconfigura-
tion has finished, the CM sends a message with the new
Partition-Node table to the LM. When the LM receives
this message, it sends another signal to the FS, announc-
ing that it should now reload its Partition-Node table and
then safely resume the application’s I/O operations.

3.5.3. File System Client
The MemEFS file system client is implemented as

a FUSE module which communicates with Redis us-
ing the hiredis communication library [26]. We have
extended the implementation of MemFS’s file system
client (FS) to support elasticity and suspend/resume ac-
tions for the application’s I/O operations during recon-
figurations. When receiving the reconfiguration sig-
nal, the FS waits until the current read(), write() or
other application request finishes, then blocks all other
incoming application requests, and sends back an ac-
knowledgment. The blocking is implemented in the re-
quest handling code as a wait on a semaphore. When
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the FS receives the signal to resume the application op-
erations, it first recomputes the Partition-Node table and
then resumes the application’s I/O operations - by incre-
menting the semaphore.

Central
Manager

memory usage

Local
Manager

Worker

Figure 4: Communication between the Central Manager and a worker.

3.5.4. Fault-Tolerance
MemEFS can be configured as fault-tolerant and per-

sistent, however fault-tolerance is outside the scope of
this paper. Making MemEFS fault-tolerant involves
providing data fault-tolerance and high availability for
the Central Manager. Data fault-tolerance can be pro-
vided by Redis, which achieves fault-tolerance through
replication. We believe that replication is not a good
strategy for in-memory runtime file systems because
it largely increases memory usage, while also slowing
down the writing operations. The Central Manager can
be made highly available by leveraging state-of-the-art
solutions [27]. We defer to future work studying the dif-
ferent strategies for fault-tolerance, such as erasure cod-
ing for data and state machine replication for the Central
Manager.

4. Evaluation

We evaluate MemEFS from two perspectives: elas-
ticity and network adaptability using typical scien-
tific workloads. In terms of elasticity, we show how
MemEFS can control the trade-off between resource uti-
lization efficiency and application performance. In this
scenario, we use a suite of typical scientific workflows
and a set of elastic policies in a cluster setup.

In terms of network adaptability, we again show how
MemEFS can control the trade-off between resource
utilization efficiency and application performance. In
this scenario, we use the same suite of typical scientific
workflows in a cloud setup.

Raw performance metrics (bandwidth, latency) are
presented in our previous work [5], where we exten-
sively study the performance and scalability of MemFS.
In this paper we only focus on MemEFS’ elasticity and

Table 1: Workflows Characteristics
Application # Tasks Input Size Peak Storage

Montage 139918 51GB 1TB
BLAST 41472 57GB 550GB

Broadband 1080 6.8GB 700GB
Cybershake 81721 230GB 870GB

network adaptability, and show how real-world applica-
tions can benefit from it.

4.1. Evaluation Applications

As evaluation applications we used two real-world
and two synthetic scientific workflows. Table 1 de-
scribes the characteristics of these workflows in terms
of total number of tasks, size of input data and peak
value of stored data during their runtime. The two real-
world workflows are Montage [1] and BLAST [2] - their
source code and input data are available online. Mon-
tage is an astronomy application that builds a mosaic
from a set of input images of a galaxy. The size of
the application depends on the number of input images.
Montage is composed of multiple stages in which a dif-
ferent binary is run for various image operations, e.g.,
processing, aggregation, partitioning of results. BLAST
is a bioinformatics application that searches for spe-
cific nucleotide sequences in a database. Like Montage,
BLAST is also composed of multiple stages involving
partitioning, processing and aggregation of data. For
Montage, we used a 20 × 20 mosaic centered on the
M17 galaxy, while for BLAST we used the NCBI nt
database.

The two synthetic scientific workflows are Broad-
band [28] and Cybershake [28]. Because their code
and input data are not openly accessible, we generated
two synthetic workflows using publicly available exe-
cution traces of their real-world counterparts [29, 30].
We selected these two from the public repository of
workflows [29, 30] since these generated the largest data
amounts. To generate the synthetic workflows, we used
the Application Skeletons framework [31]. This frame-
work allows the user to specify the data usage patterns,
task runtimes and task dependencies.

4.2. Elasticity Evaluation

To show how MemEFS scales elastically with the ap-
plication storage demands, we ran all 4 workflows under
all valid elastic scaling policy mixes in a cluster setup.
We use the set of elastic scaling policies described in
Section 3.4.3. We also introduce two performability
metrics, the resource utilization improvement and the
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performance overhead, to help compare the efficiency
of the various elastic scaling policies. Next, we evaluate
the degree of storage load balancing achieved by these
scaling policies.

4.2.1. Cluster Setup
The elasticity experiments were executed on the

DAS4 multi-cluster system [32]. Each compute node
is equipped with a dual-quad-core Intel E5620 2.4 GHz
CPUs and 24GB memory. The nodes are connected by
a commodity 1Gb/s Ethernet and a premium Quad Data
Rate (QDR) InfiniBand providing a theoretical peak
bandwidth of 32Gb/s. For our experiments, we chose
to use the IP over InfiniBand (IPoIB) interface of the
latter, which delivers approximately 1GB/s bandwidth.
For all experiments, out of the 24GB node memory, we
allocated 20GB to MemEFS and left 4GB for the oper-
ating system. In our setup, the compute nodes, which
run the application tasks, also act as storage nodes for
MemEFS. Thus, when scaling MemEFS, the applica-
tion also scales. In all experiments, the user has to pro-
vide the initial number of nodes, N, on which MemEFS
and the application are deployed. We consider that this
number can be easily computed, for example by using
the size of the input data. Using the input data size to de-
termine the initial number of nodes, in our experiments,
Montage starts on 16 nodes, BLAST on 8 nodes, Cyber-
shake on 32 nodes, and Broadband on 8 nodes.

4.2.2. MemEFS Performability
For applications where intermediary data may be dis-

carded since it is no longer needed, we evaluate different
mixes of scaling out and scaling in policies. For appli-
cations that only exhibit an increasing data usage, we
evaluate MemEFS only under scaling out policies. In
this section, we only present results using the cold mi-
gration scheme.

To illustrate the behavior of the policies, Figure 5
shows the resource utilization versus allocated storage
during the runtime of Montage for all the six possible
scaling policy combinations. As opposed to the increas-
ing and shrinking data footprint of Montage, BLAST’
data footprint only increases. Therefore, we evaluate
BLAST only under the three scaling out policies. Fig-
ure 6 shows the three elastic policies behavior when run-
ning BLAST.

For brevity, we do not present the elastic scaling be-
havior of the Cybershake and Broadband workflows, as
their scaling patterns are similar to those of Montage
and BLAST, respectively. However, we report their per-
formability to show how the scaling policies affect the

resource utilization efficiency and the application per-
formance.

To evaluate the performability of MemEFS, we exe-
cuted the workflows on two deployment schemes: static
and elastic. In the static deployment scheme, MemEFS
provisions enough nodes to store all the data generated
by the application. In the elastic deployment scheme,
MemEFS starts by provisioning enough nodes to copy
the application input data and afterwards it uses the pre-
viously discussed scaling policies. We repeated each
experiment 4 times and report the average.

We use the following performability metrics to assess
the quality of the elastic policies:

• Resource Usage Improvement: represents the
amount of resources (memory, nodes) wasted for
an elastic run compared to the amount of resources
wasted for the static run. The resource usage im-
provement is defined as:

RUI =
W(static) −W(elastic)

W(static)
.

W(s) represents the amount of wasted resources
in a deployment scheme s and is defined as the
amount of allocated resources unused by the ap-
plication:

W(s) = A(s) − U(s),

where A(s) is the amount of allocated resources,
and U(s) is the amount of used resources. The
higher the value of this metric, the better the policy.

• Performance Overhead: represents how much
slower is an elastic run compared to the static run.
This overhead captures the impact of an elastic run
on the application performance: reconfiguration
overheads and less compute capacity. The lower
the value of this metric, the better the policy.

Figure 7a presents the results of the elastic policies
for running Montage. Plot bars are sorted according
to policy aggressivity. During the runtime of Mon-
tage, intermediate data that is no longer needed is dis-
carded and, thus, we evaluate all possible combinations
of our proposed policies. As expected, when increas-
ing the aggressivity of our policies, the resource usage
improvement decreases together with the performance
overhead. This is explained by the fact that more ag-
gressive policies use more workers, thus achieving a
better application speedup. For Montage, the RUI varies
between 31.9% (ASO+ASI) and 65.7% (CSO+CSI),
while the performance overhead varies between 14.4%
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Figure 5: The behavior of elastic scaling policies for Montage.
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Figure 6: The behavior of elastic scaling policies for BLAST.

(ASO+ASI) and 28.5% (CSO+CSI). The large differ-
ence between the two metrics is given by Montage’s de-
sign: large parallel stages are mixed with long sequen-
tial stages (synchronization points represented by data
aggregation/partitioning stages). During the sequential
stages, our policies are able to largely improve the re-
source utilization without incurring performance over-
head.

Figure 7b shows the policies evaluation results when
running BLAST. For BLAST, no intermediary data may
be discarded, thus we only evaluate the scaling out
policies. As expected, when the policy aggressivity
increases, both evaluation metrics show a decreasing
trend, with the performance overhead being propor-
tional to the resource utilization improvement. In this

scenario, the RUI ranges from 28.3% (ASO) to 58%
(CSO), while the performance overhead ranges from
32.2% (ASO) to 45.7% (CSO). As opposed to Mon-
tage, BLAST does not have sequential stages and run-
ning with less worker nodes will slow down the execu-
tion.

Figure 7c shows the policies evaluation results for the
synthetic Broadband workflow. Similarly to BLAST, in-
termediary data may not be discarded, thus we could
not evaluate the scaling in policies. Again, both per-
formability metrics decrease as the policy aggressivity
increases. The resource usage improvement varies be-
tween 2.3% (ASO) and 55.6% (CSO) and the perfor-
mance overhead varies between 7.5% (ASO) and 22.2%
(CSO). Interestingly, for Broadband, the CSO policy
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Figure 7: Impact of scaling policies on resource utilization efficiency and application performance for various workflows (lower is better for
performance overhead; higher is better for resource usage improvement).

outperforms all others, with a 55.6% resource usage im-
provement while incurring only a 22.2% performance
overhead. This is explained by the Broadband work-
flow structure [30]: in the first stages, the workflow is
less parallel, while the final stages exhibit a large degree
of parallelism. Thus, the CSO policy largely decreases
the resource utilization in the first stages without con-
siderably slowing down the application.

Figure 7d shows the policies evaluation results for
the synthetic Cybershake workflow. Because Cyber-
shake needed a larger storage for its input, we started
this workflow with more nodes than the previous work-
flows, i.e., 32 nodes. Because our cluster is limited to
only 64 nodes, the NSO and ASO policies produce the
same values for both the resource utilization improve-
ment and the performance overhead metrics. In Cyber-

shake, intermediary data may be discarded and, thus,
we evaluate all possible combinations of our proposed
policies.

Again, when the aggressivity of the policy increases,
the performability metrics show a decreasing trend.
Similarly to Broadband, the conservative policy out-
performs all others. The CSO+CSI saves 47.04% re-
sources, while increasing by only 19.9% the total run-
time. The explanation for this behavior is similar to the
Broadband case: Cybershake exhibits less achievable
parallelism in the first workflow stages and the CSO
policy is therefore able to save more resources without
increasing too much the runtime.

Furthermore, for each application we have chosen the
best performing scaling policy and compared it to the
static version in terms of the total amount of acquired
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resources (node-hours). Figure 8 shows the savings
in normalized node-hours generated by elastically run-
ning the applications. The node-hours reduction ranges
from 8%-10% (BLAST and Cybershake) to 18%-22%
(Broadband and Montage). We argue that this is an
important result since these applications are usually
run many times by scientists, typically in conjunction
with parameter sweeps, to explore the entire parameter
space. Hence, our approach would greatly reduce elec-
tricity bills in private clusters and/or operational bills in
public cloud scenarios.

4.2.3. Hot Migration
To show the added benefits of hot migration, we re-

peated the previous Montage and BLAST experiments.
During these runs, for all scaling policies, we enabled
the hot migration scheme.

Figure 9 compares the time taken to perform hot and
cold migration when running BLAST with the three
scaling policies. For brevity, we omit the detailed re-
sults of individual policies when running Montage. We
notice that the hot migration duration is nearly constant,
and always below 10 seconds. In contrast, the cold
migration takes longer, and depends on the size of the
migrated data. Migration time corresponds to applica-
tion blocking time, therefore, the application runtime is
largely decreased using our newly designed hot migra-
tion scheme.

To show this, in Figure 10, we plot the runtime over-
head (application slowdown) introduced by two recon-
figuration schemes when running BLAST (Figure 10a)
and Montage (Figure 10b). We noticed that for the cold
migration scheme, when running BLAST, the slowdown
is at most 13%. In addition, for Montage, the slowdown
varies between 13% and 24%. In contrast, in the case

of hot migration, for both applications, the slowdown is
actually negligible: below 5% for Montage and below
2% for BLAST.

Although the application runtime is highly improved
when using hot migration, the normalized node-hours
results (see Figure 8) still hold. This is because the mi-
gration process takes approximately the same amount
of time for both hot and cold migration. In the case
of hot migration, this migration time is simply hidden
from the application, as the newly added nodes are de-
ployed in advance to start replicating data. Also, the
same amount of data is migrated, but asynchronously to
the application.

4.2.4. Storage Load Balancing
Figure 11 shows an in-depth analysis of MemEFS

storage load balance during an elastic run. For this
experiment, we selected a Montage execution, using a
smaller input compared to previous experiments, and
the NSO+ASI elastic scaling policy. The experiment
starts on 8 nodes, reaches a peak of 24 used nodes and
finishes on 12 nodes - the system scales out twice and
scales in only once. We measured the memory utiliza-
tion of all the nodes in the system at each second. To
measure the load imbalance, we computed the average
and standard deviation of the memory utilization values.

The peaks and the valleys followed by a decrease or,
respectively, increase in memory utilization represent
the behavior of scaling out/in. A decrease after a peak
means that the system has scaled out and some of the
partitions have been moved to other nodes leading to
an overall decrease in utilization for all the nodes. A
sudden increase after a low point on the graph repre-
sents the scaling in behavior. After the utilization drops
below the scaling in threshold, some partitions are mi-
grated and a part of the nodes removed from the system.
Thus, the overall utilization in the remaining nodes in-
creases.

Figure 11 shows the average node memory utilization
and the standard deviation for each 1 second time inter-
val. We notice that the difference between the average
and standard deviation is at most 17%. This imbalance
is given by the partition granularity: the initial number
of partitions does not divide evenly to the number of
nodes after two reconfigurations. Hence, a subset of the
nodes holds more partitions than the others and the sys-
tem exhibits a small load imbalance (17%).

4.3. Network Adaptability Evaluation
To show the efficiency of MemEFS adapting to cloud-

like network conditions, we first assessed the optimiza-
tion potential of the network-adapted MemEFS and then
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Figure 9: Hot- vs. Cold-Migration when running BLAST. Scaling out from 8 to 32 nodes with different policies, showing each individual scale out.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

CSO NSO ASO

S
lo

w
d

o
w

n

Policy

Cold Migration
Hot Migration

(a) BLAST.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

CSO+CSI

CSO+ASI

NSO+CSI

NSO+ASI

ASO+CSI

ASO+ASI

S
lo

w
d

o
w

n

Policy

Cold Migration
Hot Migration

(b) Montage.

Figure 10: Hot- vs. Cold-Migration application overhead when run-
ning BLAST and Montage.

studied its behavior on real-world workflows. As net-
work variability would affect the overall application
runtime, we evaluate in a cloud setup the performance
of MemEFS in terms of the application runtime.
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Figure 11: Load balancing analysis for a run of Montage.

4.3.1. Cloud Experimental Setup
In [10], Ballani et al. present the network variabil-

ity in eight real-world cloud data centers. We use these
eight use cases to emulate the real-world network band-
width variability in our controlled Open Nebula [33] en-
vironment installed on DAS4 [32]. We chose this ap-
proach over directly using a public cloud to create a
controlled environment.

To emulate these eight use cases [10], we use the hose
model [34] to control bandwidth in our Open Nebula de-
ployment. This model is a simple virtual network over-
lay able to limit VM-to-VM traffic according to the user
specification. For our experiments, we use 32 VMs that
each have 8 cores and 20GB of memory. Their allotted
bandwidth capabilities follow the distributions reported
in [10], shown in Figure 2.

4.3.2. Network Adaptability Experiments
We first study the optimization potential of the

network-adapted MemEFS by running an I/O-intensive
microbenchmark on each setup. The workload is com-
posed of 1000 tasks, each writing 100MB of data to
MemEFS. We compared the performance achieved by
the network-adapted MemEFS to the network-agnostic
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Table 2: Workflow Characteristics
Application # Tasks Input Size Peak Storage

Montage 39472 13GB 320GB
BLAST 3072 57GB 192GB

version, that distributes partitions evenly across nodes.
Figure 12 shows the evaluation results.
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Figure 12: Network-Adapted MemEFS vs. Network-Agnostic
MemEFS on 32 VMs running an I/O intensive benchmark (lower is
better).

The results are consistent with the bandwidth distri-
butions depicted in Figure 2. The use cases A, D, F,
G, H exhibit more network bandwidth variability. The
network-adapted MemEFS is therefore able to leverage
this variability and improve performance. The B, C, E
distributions indicate much more stable network condi-
tions, thus adapting MemEFS to their bandwidth char-
acteristics can intrinsically deliver a much smaller per-
formance gain.

To further analyze our network adaptation policies,
we selected two real-world applications, Montage and
BLAST. Their parallel stages are representative for a
wide range of the typical workload characteristics spec-
trum. First, mProjectPP, mBackground stages of Mon-
tage are CPU-bound, while mDiffFit is I/O bound. Next,
although BLAST tasks are CPU-bound, they also show
moderate memory and I/O utilization. Considering run-
time, the Montage tasks are short (order of seconds),
while BLAST tasks are longer (tens of seconds to min-
utes). Considering intermediary data size, while Mon-
tage generates small files (1-4MB), BLAST deals with
much larger files (hundreds of MB). Therefore, we con-
sider running these two applications sufficient to vali-
date our network-adapted MemEFS.

Given the limited size of our cloud setup, we have
scaled down the Montage and BLAST applications such

that their generated data could fit in 32 VMs; their char-
acteristics are shown in Table 2.

Figure 13a shows the BLAST runtimes when using
the network-aware and the network-agnostic MemEFS
systems in each emulated cloud use case. The results
clearly show that for the more bandwidth-imbalanced
setups (A, B, D, F, G, H), the network-aware MemEFS
outperforms the network-agnostic MemEFS.

Figures 13b and 13c show the bandwidth in and band-
width out utilization: the network-aware setup con-
sistently achieves better bandwidth utilization than the
network-agnostic setup. This is because in the network-
agnostic setup, fast nodes are slowed down by the slow
node and cannot fully utilize their bandwidth capacity.
In the network-aware setup, the fast nodes hold more
MemEFS partitions and thus more I/O operations are
directed to them.

Figure 14a shows the runtimes obtained for the Mon-
tage workload. Figures 14b and 14c show the band-
width utilization when running the network-aware and
network-agnostic versions of MemEFS on the emu-
lated cloud setups. The more bandwidth-imbalanced
setups lead to much better performance when using the
network-aware MemEFS. This is a direct consequence
of the network-adapted MemEFS making better use of
the available bandwidth by distributing more data to the
faster nodes.

For both workflows, we notice that although the
bandwidth utilization is improved in the network-aware
setup, we do not reach full utilization. The explana-
tion for this behavior is twofold. First, BLAST tasks are
not I/O-bound. Since MemEFS I/O is done through the
network, BLAST tasks are unable to saturate the band-
width. Second, in the Montage case, the parallel stages
(mProjectPP, mDiffFit, mBackground) are intertwined
with (long-running) sequential stages (mImgTbl, mCon-
catFit, mBgModel). These synchronization points de-
crease the overall network utilization.

For the cloud use cases that exhibit less network vari-
ability (B, C, E), the network adaptation mechanism
of MemEFS cannot achieve better bandwidth utiliza-
tion since the partition-to-node mapping is similar to
the network-agnostic setup. Furthermore, the network
utilization achieved in this setup is close to 40% due
to application characteristics: BLAST tasks are not I/O
bound, while Montage has synchronization points that
decrease the overall network utilization.

4.3.3. Multi-Cloud Performance Overhead
In the previous section we showed the behaviour of

MemEFS when it is run on a cloud that exhibits band-
width variability and how MemEFS adapts to such con-
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Figure 13: BLAST on 32 VMs executed using network-agnostic
MemEFS and, respectively, network-adapted MemEFS.

ditions. In this section, we show the behaviour of
MemEFS during the migration period between a clus-
ter (or a private cloud) and a public cloud. Such migra-
tion is usually performed in order to increase processing
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Figure 14: Montage on 32 VMs executed using network-agnostic
MemEFS and, respectively, network-adapted MemEFS.

power and file system capacity.
To perform the experiments, we launched virtual ma-

chines in two regions of the Amazon EC2 commercial
cloud: Ireland (IE) in Dublin, and Germany (DE), in
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Figure 15: Inter-cloud Performance Analysis

Frankfurt. Initially, we measured latency (using the
ping tool). Intra-cloud latency is approximately 0.5 ms.
Inter-cloud latency is 22.5 ms.

We measured bandwidth between the two cloud re-
gions, as well as internal cloud bandwidth. Figure 15a
plots the achieved results. The tool we used to mea-
sure bandwidth is iperf. The setup is as follows: we run
a VM in the Germany datacenter that accepts incom-
ing connections. Then, up to four other VMs, either
from the same data center or from the remote data cen-
ter, send data to the receiver VM.

We notice that when network traffic stays within the
same datacenter, the incoming bandwidth measured in
the receiver VM is constant at about 850 Mbit/s, irre-
spective of the number of senders. When the senders are
located in the remote data center, only one connection
between the receiver and a sender achieves about 250
Mbit/s. When the number of senders is increased, the
achieved incoming bandwidth of the receiver increases
as well, up to 840 Mbit/s. Therefore, we can conclude
that in a many-to-many pattern of network traffic, as

is the case with MemEFS, the available bandwidth can
still be saturated.

We determine an upper bound on the application per-
formance (overhead) incurred by an inter-cloud setup,
by performing a network-intensive micro-benchmark.
We run 4096 dd task on MemEFS, each individual task
writing 1, 4, 10, 20 MB files. The smaller file sizes
are representative for applications like Montage, while
the larger file sizes are representative for applications
such as BLAST. These micro-benchmarks are network-
intensive workloads, while real-world applications also
perform computations besides I/O. Therefore, the re-
sults obtained represent a worst-case scenario when
running applications in an inter-cloud setup.

To run these experiments we deployed 8 m4.xlarge
virtual machines, each having 4 virtual cores and 16 GB
memory. When running on two datacenters, 4 VMs are
deployed in each cloud. We compare the inter-cloud
runtime with a single cloud runtime. Figure 15b plots
the achieved results. The increased running times when
MemEFS is deployed on two clouds are due to the large
latency. For each I/O operation, the penalty of a round-
trip time (45 ms) is incurred by the application runtime.
As these experiments contain only I/O operations, the
latency cannot be hidden and the worst-case scenario
overhead is fully exposed.

4.4. Discussion
We have evaluated MemEFS’ elastic scalability on

different real-world and synthetic scientific workflows.
We have designed a set of elastic scaling policies, in
a range from scaling aggressively to scaling conserva-
tively, such that the user could trade off application per-
formance for resource utilization improvement.As ex-
pected, our results show that, with more aggressive poli-
cies both the resource usage improvement and the appli-
cation slowdown decrease.

Our experiments show that MemEFS obtains a re-
source utilization improvement from 47% to 65.7%
on all applications, when using conservative scaling
policies. The incurred performance overhead depends
on the application structure, being at most 28% for three
out of four evaluated workflows. In all scenarios, the
performance overhead is much smaller than the re-
source utilization improvement. The only workflow
for which the performance overhead is comparable to
the resource utilization improvement is BLAST, which
has a highly parallel structure.

Our experiments show that users can choose from a
space of different trade-offs, depending of their appli-
cation structure, and performance and utilization objec-
tives. MemEFS’ elasticity is able to reduce the re-
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source usage time (quantified as node-hours) by 8%
to 22%. For users that run scientific applications repeat-
edly, MemEFS would greatly reduce operational costs.

When migrating scientific applications to public
clouds, our experiments show that it is imperative to
adapt MemEFS to the underlying network characteris-
tics. Using real-world cloud data center bandwidth dis-
tributions [10], we evaluated MemEFS’ network adap-
tation mechanism on two real-world applications that
exhibit different structural characteristics and runtime
behaviors. Our results show that the MemEFS’ net-
work adaptation mechanism greatly improves perfor-
mance in cloud setups suffering from high bandwidth
variability. In such scenarios, MemEFS’ adaptation pol-
icy improves the application performance by up to 50%
through judicious use of the available network band-
width.

5. Related Work

We discuss three classes of related work: (i) research
focused on objectives similar to ours: elasticity and in-
memory data storage; (ii) research focused on some of
our design issues: hashing mechanisms for better load
balancing in key-value stores; and (iii) research focused
on adapting workloads to the available bandwidth of the
underlying network.

5.1. Elasticity in Data Storage Systems

Although elastic application scaling has gathered a
lot of attention, especially with the use of IaaS clouds,
research efforts were mostly focused on provisioning
compute resources. However, scientific applications
can process large data amounts, requiring fast access
to on-demand storage. Distributed file systems, usually
used to store application’s data, e.g., PVFS [35], Glus-
terFS [36], XtreemFS [37], HDFS [38], CEPH [39],
provide limited elasticity support as they are designed
for cluster-wide deployments. Usually the environ-
ments in which they run are stable; node addition and re-
moval represent the exception not the norm. These file-
systems are designed with durability in mind and they
employ complex data structures to optimize the stor-
age on disks by using memory for data caching. Most
of these file systems provide only manual re-balancing,
requiring the intervention of an administrator. CEPH
supports automatic re-balancing but with additional re-
source usage.

The problem of storage elasticity was addressed by
Nicolae et.al [40] and Lim et.al [41]. Nicolae et.al pro-
pose an elastic storage solution for IaaS clouds in the

form of a POSIX file-system. The authors share a part
of our goals, mainly to minimize the wasted storage
and thus the cost payed by the user while keeping the
application performance overhead low. The proposed
file-system provisions and releases virtual disks of fixed
size from the IaaS cloud transparently to the application
to meet time-varying storage demands. However, this
file-system can only be used by the application running
in the VM in which the file system is installed. Lim
et.al. provide an elastic storage service based on HDFS
that provisions nodes from a cloud provider and uses
them for storage capacity. The authors use the CPU uti-
lization of the storage nodes as a metric to change the
number of provisioned nodes, considering that this met-
ric is correlated to the performance of the storage ser-
vice, e.g., response time per request. When the number
of storage nodes is changed, data re-balancing is also
performed, with the goal of optimizing CPU utilization
and I/O bandwidth. This solution adapts the number of
storage nodes to improve application data access time,
while MemEFS adapts its number of nodes to total ap-
plication storage demand.

Faster data access can be achieved by distributing the
data across the memory of the nodes on which the ap-
plication is running. RamCloud [42] and FaRM [43]
provide different optimized means for applications to
store their data in memory. Other distributed in-memory
caching systems, based on memcached, were proposed
as an intermediate layer between the applications and
the distributed file systems, to speed up the access to
data [44, 45]. However, these solutions were designed
to be deployed on the entire cluster and they lack elas-
ticity support. AMFS [4] or MemFS [6] provide generic
in-memory runtime file systems but are also designed to
run on a static number of nodes.

Elasticache [46] and Hazelcast [47] provide elastic
in-memory caching services based on memcached and
Redis. Although they allows users to add more nodes to
the in-memory cache cluster, they lack automated load-
balancing and auto-scaling mechanisms to change the
number of nodes based on dynamic application storage
demand.

5.2. Load Balancing Schemes in DHTs
Several works focused on load balancing techniques

for key-value stores [48, 49, 50, 22]. The most promis-
ing class of solutions is based on consistent hashing.

ZHT is a zero-hop distributed hash table [48]. As in
MemEFS, ZHT keys are assigned to partitions which
are then distributed over physical nodes. Each node
has one or more ZHT instances, each of them main-
taining one or more partitions and serving requests for
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them. ZHT supports heterogeneous systems with var-
ious storage capacities and computing power by vary-
ing the number of partitions per node. However, ZHT
provides poor elasticity support in contrast to MemEFS,
for which node addition or removal is fully automated.
When a new node joins ZHT, it adds itself in the ring
as the neighbor of the most loaded node and starts mi-
grating partitions from its neighbor. Node departures
are done manually: for a node to leave the system,
an administrator needs to modify the global member-
ship table. Furthermore, a detailed comparison between
MemEFS and ZHT is outside the scope of this paper, as
it would translate to comparing ZHT and Redis. This
is because MemEFS offers a POSIX-like interface to its
data-store (Redis), while ZHT only offers a simple key-
value interface.

Other works rely on the use of two hash func-
tions [49, 50, 22]: one to map the nodes to a contin-
uous interval [0, 1) and another one determine the lo-
cation of the keys by mapping them in the same inter-
val. Brinkmann et al. introduces two adaptive hashing
strategies [49] to redistribute keys among nodes when
the capacities of the nodes, the number of nodes or the
number of keys change. Each node is in charge of mul-
tiple virtual bins, each virtual bin handling one sub-
interval with a length proportional to its capacity and
a stretch factor. Schindelhauer et al. improves the load
balancing in heterogeneous DHT by choosing nodes for
keys based on weights [50]. Each node is assigned
a positive weight and keys are distributed to it with a
probability proportional with the node’s weight and in-
versely proportional with the sum of all node weights.
To provide elasticity and cope with node heterogeneity,
MemEFS adapts Y0’s algorithm [22]. Opposed to these
previous solutions, Y0 gives MemEFS more flexibility
in deciding the total number of partitions, allowing a
more fine-grain control on how much MemEFS should
scale.

5.3. Network Adaptability
We identified several studies that improve application

performance when the underlying compute resources
suffer from bandwidth variability. The main difference
between our approach and these studies is that we tar-
get the distributed file system level. Therefore, our ap-
proach is more generic and transparent to the applica-
tion and scheduler.

In [51], the authors propose the use of a Software
Defined Network (SDN) to achieve a bandwidth-aware
scheduler for Hadoop. They utilize the link measuring
and bandwidth setting capabilities of an SDN to dis-
tribute data and tasks in such a way that the makespan

of a MapReduce job is minimized. Another frame-
work [52] that adds network awareness to Hadoop con-
siders multi-cluster Hadoop setups. Because inter-
cluster bandwidth is often lower than intra-cluster
bandwidth, they account for this in their scheduler
and achieve good performance in terms of makespan.
EHadoop is another framework that also takes into
account the network usage of MapReduce jobs when
scheduling [53]. It decouples data from computation
by having two separate clusters. The bandwidth be-
tween the two clusters is variable. By performing online
profiling of task network usage and completion time,
EHadoop keeps job completion time stable when faced
with different network topologies.

In [54], the authors describe a task scheduler for in-
dependent tasks that incorporates bandwidth knowledge
to schedule tasks on resources. Tasks are scheduled on
VMs with different bandwidth capabilities. It is not
immediately clear, however, if the bandwidth require-
ments of the individual tasks are known beforehand.
Assuming available bandwidth is known, but variable,
the authors from [55] propose a DAG workflow sched-
uler that minimizes makespan using fuzzy optimization
techniques. It can handle workflows that have inter-
task data dependencies, such as Montage. It assumes
data transfer information between tasks is known be-
forehand.

6. Conclusions

Scientific workflows exhibit significant storage de-
mand variability at runtime. To overcome this issue, tra-
ditional approaches generally over-provision the num-
ber of storage nodes, such that the system could handle
the peak storage demand. Our contribution, MemEFS,
scales elastically at runtime, transparently to the appli-
cation and based on the storage demand, while distribut-
ing data across system nodes to achieve load balance for
both storage and network traffic.

With the rapid increase of data volumes generated by
scientific domains such as bioinformatics or astronomy
(”data deluge”), we expect scientific workflows to out-
grow the (memory) storage capacities of private clus-
ters. As a consequence, clusters will need to be aug-
mented by means of public cloud computing infrastruc-
ture. However, as many studies point out, such plat-
forms are plagued by large bandwidth variability due to
colocation and virtualization overheads.

Our experiments show that it is imperative to adapt
the storage layer to the underlying network, as oth-
erwise the application would observe a severe perfor-
mance penalty. To overcome this performance penalty,
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we equipped MemEFS with a mechanism that leverages
network variability and increases performance by up to
50%. Our experiments show that the larger the net-
work variability is, the more MemEFS outperforms the
network-agnostic approach.

We show that, with simple adaptation policies,
MemEFS replaces the need to either a-priori estimate
application resource requirements or to over-provision
resources. Our experiments show that MemEFS able
to largely improve resource utilization, while incurring
only modest performance overheads. Our results are a
promising step in further exploring trade-offs between
resource utilization and application performance.
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