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Abstract

In many-task computing (MTC), applications such as scientific workflows or parameter sweeps
communicate via intermediate files; application performance strongly depends on the file sys-
tem in use. The state of the art uses runtime systems providing in-memory file storage that is
designed for data locality: files are placed on those nodes that write or read them. With data
locality, however, task distribution conflicts with data distribution, leading to application slow-
down, and worse, to prohibitive storage imbalance. To overcome these limitations, we present
MemFS§, a fully symmetrical, in-memory runtime file system that stripes files across all com-
pute nodes, based on a distributed hash function. Our cluster experiments with Montage and
BLAST workflows, using up to 512 cores, show that MemFS has both better performance and
better scalability than the state-of-the-art, locality-based file system, AMFS. Furthermore, our
evaluation on a public commercial cloud validates our cluster results. On this platform MemFS
shows excellent scalability up to 1024 cores and is able to saturate the 10G Ethernet bandwidth
when running BLAST and Montage.
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1. Introduction

Many scientific computations can be expressed as Many-Task Computing (MTC) applica-
tions. In such scenarios, application processes communicate by means of intermediate files. The
performance of such applications depends, among other factors, on the speed of the underlying
file systems.

In general, many-task computing applications use three types of data: input, temporary data
generated during job execution (stored in a runtime file system), and output. In data-intensive
scenarios, the temporary data is generally much larger than input and output. In a 6x6 degree
Montage mosaic [1], for example, the input, output and intermediate data sizes are 3.2GB,
10.9GB and 45.5GB, respectively [2]. Thus, speeding up I/O access to temporary data is key
to achieving good overall performance.
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General-purpose, distributed or parallel file systems such as NFS, GPFS [3], or PVES [4]
provide less than desirable performance for temporary data for two reasons. First, they are typ-
ically backed by physical disks or SSDs, limiting the achievable bandwidth and latency of the
file system. Second, they provide POSIX semantics which are both too costly and unnecessar-
ily strict for temporary data of MTC applications that are written once and read several times.
Tailoring a runtime file system to this pattern can lead to significant performance improvements.

The current state of the art suggests to use memory-based runtime file systems as they re-
move all overheads of mechanical disks or SSDs. For MTC applications, such file systems are
co-designed with task schedulers, aiming at data locality [2]. Here, task scheduling places tasks
onto nodes that contain the required input files, while write operations go to the node’s own
memory. Analyzing the communication patterns of the Montage [1] and BLAST [5] workflows,
however, shows that temporary files often are created by a single task. In subsequent steps, tasks
combine several files for their computation, and final results are based on global data aggrega-
tion. Implementing for data locality hence leads to two significant drawbacks: (1.) Local-only
write operations can lead to significant storage imbalance across nodes, while local-only read
operations cause file replication onto all nodes that need them, which in worst case might exceed
the memory capacity of nodes performing global data reductions. (2.) Because tasks typically
read more than a single input file, locality-aware task placement is difficult to achieve in the first
place.

To overcome these drawbacks, we designed a distributed, in-memory runtime file system,
called MemFsS, that replaces data locality by uniformly spreading file stripes across all storage
nodes. Due to its striping mechanism, MemFS leverages full bisection bandwidth of premium
networks, maximizing I/O performance. Since remote operations have become less expensive
on premium networks, MemFS is able to achieve better performance and (multi-core) scalabil-
ity than the state-of-the-art, locality-based AMFS [2] file system, while avoiding the storage
imbalance drawback. Furthermore, MemFS guarantees similar performance to any scheduler
that uniformly distributes tasks to compute nodes. The main contributions of this work are the
following:

e We present a new, locality-agnostic approach to speed up MTC applications’ I/O access to
runtime generated data.

e We show that our approach alleviates the locality-based bottlenecks (storage and network
traffic imbalances, scheduling overheads), leading to faster application completion times
and better scalability.

e We show that our approach is not limited to tightly-coupled compute clusters, it is also
applicable to public commercial clouds with high speed interconnects.

o Our experiments, running real-world scientific applications, show that the locality-agnostic
approach is only bound by network bandwidth.

This paper is organized as follows. Section 2 presents background and related work, while in
Section 3 the overall system design is described. In Section 4, we evaluate MemFS and discuss
achieved performance. Section 5 draws conclusions and indicates directions for future work.
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Figure 1: Many-Task Computing Applications

2. Background and Related Work

Traditional approaches for running scientific computations that analyze large volumes of data
on clusters or supercomputers usually involve preserving data-locality to improve application
performance. This is done because remote copying of the data is considered an expensive oper-
ation due to the overhead incurred by the network. However, preserving data-locality for MTC
applications is a difficult task for both the underlying file system and the scheduler. Locality
information needs to be exposed by the file system and the scheduler needs to place computa-
tion where the data resides. For application tasks that need multiple input files this is difficult to
achieve and replication schemes or collective movement of data need to be implemented.

For example, the widely-known workflow applications Montage and BLAST, shown in Fig-
ures la and 1b, contain several stages of global data partitioning and aggregation. For global
partitioning, a single task is creating input data for many other tasks. When writing locally, this
can lead to severe storage imbalance among nodes. As soon as the dependent tasks start reading
these files, several copies are created (for reading locally), leading to increased storage (memory)
consumption. For global aggregation, a single task has to copy large amounts of data into its own
storage, possibly exceeding its own capacity. Aiming at equally spreading data across nodes can
help overcoming these limitations.

In addition, network technologies have evolved and current premium networks offer low la-
tency overheads and high bandwidth. Building a network block device attaching remote memory
over InfiniBand had already been proposed in [6]. As a current example, the Dutch National
Supercomputer, Cartesius [7], is equipped with Mellanox ConnectX-3 InfiniBand adapters that
are able to achieve a unidirectional bandwidth of 56Gb/s. This offers a theoretical bi-directional
peak bandwidth of 14GB/s. The Stream benchmark [8] reports, on the same supercomputer,
a 10GB/s memory bandwidth. Hence, theoretically, two nodes writing simultaneously to each
other’s memory would saturate both network and memory bandwidth. In such an environment, a
file system that efficiently exploits available network bandwith and uses a uniform data distribu-
tion would remove the need of data-locality.

Traditional parallel or distributed file systems such as GPFS [3], PVFS [4], Lustre [9], Glus-
terFS [10], XtreemFS [11], and Ceph [12] are generally deployed statically on (a subset of)
the nodes of a cluster/supercomputer. Such storage systems provide consistency, durability and
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fault-tolerance. However, such general-purpose distributed file systems might not be suitable
for data-intensive MTC workloads that generate large amounts of temporary data for the follow-
ing reasons. First, they provide strict POSIX semantics that might add overhead while running
MTC workloads. To optimize I/O accesses of MTC applications, MemFS relaxes POSIX com-
pliancy offering a “write-once, read-many” semantics, while preserving POSIX interfaces to
support legacy applications. In contrast, HDFS [13], while also optimising for the “multi-read,
single-write” access pattern, can only support applications that use a HDFS-specific API. Sec-
ond, disk-induced high latency and low bandwidth has been identified as a major bottleneck for
storage systems [14]. Finally, metadata scalability has been pointed out in [15, 16] as another
performance limiting factor.

Thus, for optimising MTC application performance, in-memory (or SSD-based) runtime file
systems are being proposed [2, 17], as they increase application performance by improving I/O
efficiency. As opposed to traditional, general-purpose distributed file systems, such runtime stor-
age can have a limited life-time (the runtime of the application) and can accelerate I/O accesses
to temporary files generated by applications. Subsequently, the output must be staged out to
permanent storage.

While local, single-node, approaches to runtime storage are available, such as Aerie [18] or
HyCache [19], our work focuses on distributed runtime file systems. Hence, MemFS is best
compared to distributed systems that co-locate computation and storage to benefit from data-
locality optimisations.

The AMFS Shell [2] is a state-of-the-art execution engine backed by an in-memory dis-
tributed file system that enables the parallelization of scripting applications. The underlying file
system uses main memory for storing both data and metadata. To improve write performance,
the file system issues only local writes. The execution engine then tries to improve read perfor-
mance by moving computation to the data. In case a job reads more than one file, remote reads
are performed and replication is used to store the remote files locally. Further, AMFS assumes
that files fit in a node’s memory.

HyCache+ [17] is a distributed file system caching middleware that accelerates application
I/O accesses to persistent storage, such as GPFS. Similarly to AMFS, HyCache+ improves per-
formance by issuing only local writes. To improve read performance, HyCache+ analyzes the
job queue and prefetches the files needed by future tasks.

FusionFS [20] is another locality-based distributed file system designed with the goal of
exascale scalability. This system can be used in conjunction with SPADE [21] to capture data
provenance with negligible overheads [22]. Distributed metadata storage is implemented by
means of ZHT [23] which leverages excellent scalability.

As opposed to those locality-based approaches, MemFS (briefly introduced in [24, 25, 26])
symmetrically stripes the files on the storage nodes based on a distributed hash function. This
technique introduces three benefits. First, MemFS can leverage full bisection bandwidth of fast
networks (such as InfiniBand) when reading or writing files. Second, MemFS achieves a bal-
anced data distribution compared to the locality-based approaches. Finally, due to its locality-
agnosticism, MemFS can be used in conjuction with any scheduler that evenly distributes tasks.

3. System Design

This section presents our approach for designing MemFS. First, we introduce the software
components used for building MemFS and motivate our choices. Further, we present our main
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contributions and optimizations that turn MemFS’ building blocks into an in-memory runtime
file system for MTC applications.

3.1. Components

The MemFS distributed file system consists of three key components. First, a storage layer
that exposes each node’s main memory for storing the data in a distributed fashion. Second, a
data distribution component that enables each client to decide where to store data, or where to
read data from. Third, a transparent file system client mounted on each compute node that serves
as an interface between the storage layer and the MTC applications. In the following paragraphs
we describe each component.

3.1.1. Storage

The actual DRAM storage layer we use is Memcached [27]. This is a distributed cache,
extensively used in production, that achieves high-performance and good scalability. It uses
simple key-value semantics and is locality-agnostic, does not offer replication capabilities and
the storage servers do not communicate with each other. Hence, the client is responsible for data
distribution and load balancing.

3.1.2. Data Distribution

MemFS equally distributes the files across the available Memcached servers, based on file
striping. For mapping file stripes to servers, we use Libmemcached [28], a Memcached client
library. For each stripe to be stored, we use the name of the file concatenated with the stripe
number as key for the hash. Hence, based on the hash function value, the library decides which
storage server to choose. In order to partition the data as evenly as possible between available
storage servers, Libmemcached offers several hashing schemes. In our implementation we use
the modulo hashing scheme. This is a simple hashing scheme that assigns each object to a
storage server in a circular fashion, guaranteeing a balanced data distribution across all storage
servers. For scenarios when nodes join and leave the system, a consistent hashing [29] scheme
of Libmemcached can be used. However, in this paper we do not cover such a scenario which
will be addressed in future work.

3.1.3. File System Client

We expose our storage system using a FUSE [30] layer, exposing a regular file system inter-
face to the MTC applications. At startup, each FUSE client must be aware of each Memcached
server and takes as input a list of IP addresses. Through the Libmemcached API, the FUSE file
system communicates with the Memcached servers to store and retrieve files.

Figure 2 shows the overall system design of MemFS. The figure shows all nodes running a
particular MTC application, reflecting our assumption that all application nodes also run MemFS.
In general, however, it is not required that the application compute nodes also act as MemFS
servers. It would also be possible to use a (partially) disjoint set of storage servers for running the
Memcached processes, for example when the application itself has large memory requirements.
It is necessary, however, that compute nodes run, next to the MTC application, the FUSE client
and Libmemcached, in order to access the file storage. Figure 2 shows the example of a write
operation, issuing Memcached set commands; for read operations, get commands would be used
instead.
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Figure 2: MemFS System Design

3.2. Implementation Building Blocks

For combining the above-mentioned components for storage, data distribution, and the file
system client, the following building blocks are vital for an efficient implementation.

3.2.1. Striping Mechanism

The file system client is also responsible for the striping mechanism which is beneficial for
several reasons: (1.) Using stripes as storage unit, file sizes are only limited by the total amount
of memory on all Memcached servers. (Neither Memcached’s object limit of 128MB nor the size
of an individual node’s memory limit the possible size of a file.) (2.) Distributing stripes across
Memcached servers improves the read and write throughput by transferring data via parallel
streams to/from multiple Memcached machines. (3.) The striping mechanism optimizes small
reads for applications that do not read entire files. In this way, MemFS minimizes latency and
data transfers for applications that read only small parts of (large) files.

3.2.2. Buffering and Prefetching

To further improve performance and network transfer efficiency, the file system client imple-
ments a buffering scheme for writing, and a prefetching scheme for reading. Buffering saturates
write bandwith by using parallel streams to send the contents of the buffer to remote Memcached
servers. Prefetching minimizes latency by overlapping communication and computation. Our
prefetching scheme is simple and effective only for sequential reads: when an application re-
quests data from a specific stripe, MemFS prefetches the consecutive stripes in a local cache.

Both buffering and prefetching work with thread pools to implement concurrent communica-
tion to the remote nodes. The buffering thread pool fetches file stripes from the write buffer and
sends them, asynchronously, to the memcached servers. Whenever an application calls close(),
or flush(), our file system waits until the write buffer has been emptied and then returns. The
prefetching thread pool adds consecutive file stripes to the read buffer. For both buffering and
prefetching, each thread is responsible for sending/retrieving a file stripe. Hence, when increas-
ing the number of threads, MemFS is able to maximize the available bandwidth to achieve better
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Figure 3: MemFS Design Decisions

performance. MemFS uses caches of 8MB per open file for the prefetching and buffering proto-
cols.

Figures 3a and 3b motivate the design decisions we made when developing MemFS. We
have chosen a stripe size of 512KB for the files stored in MemFS since this achieves the best
bandwidth when writing files, as shown in Figure 3a. The stripe size does not influence reading
speed because of the prefetching mechanism shown in Figure3b. This prefetching mechanism
hides the communication latency and is thus not dependant on the stripe size, but rather on the
number of threads that do prefetching.

3.2.3. Write-once semantics

With full POSIX-compliance, applications are allowed to read and write files both sequen-
tially and non-sequentially, also concurrently by multiple processes. This flexibility, however,
comes at the price of more complex file and concurrency management, causing runtime over-
head. Since MTC applications exhibit only “single-write, multiple-read” I/O patterns, and files
are usually written sequentially, MemFS restricts write operations to writing once, and only se-
quentially. Reading files in MemFS is POSIX-compliant: files can be read many times and in
any order.

3.2.4. Metadata Organization

When a file is created, MemFS writes a special key containing the file name, along with an
empty value via Libmemcached/Memcached. Once the file is closed after writing, the actual
file size is replacing the empty key. When the file is subsequently opened for reading, the key
containing the file name is looked up to retrieve the file size.

A similar protocol is used for directory metadata. When a directory is added, we create
a Memcached key using the directory name, and an empty value. Whenever a file/directory is
added under this directory, its corresponding Memcached value is appended with the file/directory
name. For this operation we use the Memcached append function that is internally atomic and
synchronized. When a file is deleted, we just add another entry to the directory value, marking
the file as deleted.

Using this scheme, MemFS is able to achieve high performance and scalability for meta-
data operations. Scalability is achieved by distributing metadata over the available Memcached
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servers, while high performance is achieved by using Libmemchached/Memcached lookups that
can be done in constant time for each metadata operation.

3.2.5. Fault-Tolerance

At the moment, the only mechanism that MemFS could use to leverage fault-tolerance is
replication. However, this incurs performance and storage limitation penalties. Assuming the
replication factor is n, then the total storage capacity of MemFS would be decreased n times and
n times more data will flow through the network when writing files. Hence, in this paper we
do not include results using replication since it would limit the applicability and performance of
MemFS. Moreover, current state-of-the-art MTC file systems also do not provide fault-tolerance,
which is sacrificed for performance. Thus, designing a fault-tolerant MemFS will be addressed
in future work.

4. Evaluation

In this section we evaluate the MemFS file system and discuss the achieved results. The
experiments were executed on our local DAS4 multi-cluster system [31] and on the Amazon
Elastic Compute Cloud (EC2) [32].

The first part of the evaluation is performed on DAS4. The (in total 74) compute nodes of
DAS4 are equipped with dual-quad-core Intel E5620 2.4 GHz CPUs and 24GB memory. The
nodes are connected using a commodity 1Gb/s Ethernet and a premium Quad Data Rate (QDR)
InfiniBand providing a theoretical peak bandwidth of 32Gb/s. For our experiments we chose to
use the IP over InfiniBand (IPoIB) interface of the latter, which achieves approximately 1GB/s
bandwidth.

On DAS4, we compare the performance and scalability achieved by MemFS to the AMFS
[2] file system, a state-of-the-art in-memory file system for many-task computing. While both
file systems provide similar write-once semantics, their design is inherently different: AMFS is
locality-based, while MemFS is locality-agnostic. AMFS improves application performance by
issuing only local writes and uses the AMFS Shell scheduler for executing compute tasks on
those nodes that actually store needed files to improve read performance. AMFS Shell, however,
can only guarantee that one file per job achieves data locality. In case multiple files are read
per scheduled job, expensive remote reads become necessary. MemFS, in contrast, uniformly
distributes file stripes across storage nodes by means of a distributed hash function to achieve
balanced memory consumption, while utilizing the aggregate bandwidth among all nodes. For
all experiments, the compute nodes also operate as storage nodes, for both AMFS and MemFS.

In the second part of our evaluation we study MemFS’ applicability on the Amazon EC2
cloud. In this context, we analyze the scalability and performance of MemFsS in a virtualized
environment. When running on the Amazon EC2 cloud, we chose to use the c3.8xlarge instance
types. These feature 32 virtual compute cores, 60GB of memory and are connected with 10G
Ethernet links. Our iperf [33] test shows that the achievable bandwidth between c3.8xlarge EC2
instances is approximately 1GB/s. We chose this specific instance type because its virtualized
10G Ethernet network link achieves similar bandwidth to our DAS4 cluster nodes.

When running our experiments, the memory of each compute node is divided as follows. Out
of the total memory of a node, we reserve 4GB for running the applications or benchmarks and
the operating system. The rest of the system memory is used by either MemFS or AMFS for
storing the data generated by the applications or benchmarks.
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4.1. MTC Envelope Evaluation

The MTC Envelope [34] introduces a set of eight metrics that fully characterize a system’s
ability to run MTC applications at a certain scale. The set of metrics is the following: write
throughput and bandwidth, /-1 read throughput and bandwidth, N-I read throughput and band-
width and metadata operations (open, create) throughput. Here, the /-1 read depicts the case
when each node reads a different file, while the N-1 read is the case when all nodes read the
same file. Moreover, for the I/O operations, the bandwidth measures the volume of data an ap-
plication could read or write per time unit; whereas operation throughput measures how many
read() or write() calls the application is able to perform per time unit. While both types of metrics
are related, read/write bandwidth reports on actual data movement while read/write throughput
captures computational overhead of the operations.

We have chosen three file sizes - small (1KB), medium (1MB) and large (128MB) for which
we measure the MTC Envelope metrics. These are representative file sizes for MTC applications
as, for example, Montage mainly operates on file sizes in orders of megabytes, but it also gener-
ates some files in orders of kilobytes. In contrast, BLAST operates on files in the order of tens
or hundreds of megabytes.

The results were generated using two well-known file system benchmarks: iozone [35] for
I/O operations and mdtest [36] for metadata. For AMFS, we followed the benchmarking pattern
presented in [2]. Thus, all /-1 read operations are local since it benefits from locality-aware
scheduling enabled by AMFS Shell. In case of N-I read, a file is first multicast from a source
node and then the iozone benchmark is applied on local copies of the data on all compute nodes.
For the N-1 read bandwidth reported, the time taken by the multicast is taken into account, for
N-1 read throughput, it is ignored.

In Figures 4a and 5a we show a comparison of the MTC Envelope I/O operations using a
file size of 1KB. MemFS /-1 read and N-1 read show excellent performance and scalability,
outperforming corresponding AMFS operations and also both MemFS and AMFS write. With
such small files, MemFS read operations are much faster than MemFS write because of two
reasons. First, our buffering protocol cannot work with files smaller than the stripe size (512KB),
while our prefetching mechanism is not dependant on the stripe size. Second, Memcached is
reported to perform better for get rather than set.

For 1MB-sized files, as depicted in Figures 4b and 5b, we notice that the MemFS write
buffering protocol starts to show its effectiveness, leveraging linear scalability and superior per-
formance than N-1 read. The latter achieves less bandwidth/throughput than /-7 read because,
even with the file striping protocol, when all nodes read the same file, the maximum achievable
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bandwidth/throughput is that of a single Memcached server for each file stripe. We also notice
that in this case, the MemFS approach of uniformly spreading data across compute nodes, based
on a distributed hash function, when using a high-speed network achieves better I/O performance
than locality-based AMFS for all MTC Envelope metrics.

When benchmarking with 128MB files (Figures 4c and 5c), we notice that MemFS is faster
for write and N-1 read than AMFS. However, for the /-1 read, AMFS performs better because
all reads are local, while MemFS read generates high volumes of network traffic when 128MB
are being read. We also notice a decrease in bandwidth/throughput achieved for 128MB files
compared to 1MB files. This is because our prefetching mechanism fetches more data from the
network than in the IMB case which puts more pressure on the Memcached servers and also on
the network layers of the operating system.

When reading 1KB and 1MB files over the network, MemFS is faster than AMFS for the
1-1 read, even though the AMFS reads are local. For small files, the total execution time for /-7
read is latency-bound rather than bandwidth-bound. Furthermore, the locality-aware scheduling
algorithm of AMFS is slower than the locality-agnostic scheme used for MemFS, and generates
an even larger latency for AMFES. In contrast, reading 128MB files is bandwidth-bound, such
that when reading large amounts of data, the scheduling scheme of AMFS does not limit its
performance, while MemFS is limited by the network bandwidth.

For all file sizes, MemFS outperforms AMFS for the N-1 read operation. This behaviour is
explained by the performance achieved with the software multicast implemented in AMFS Shell.
In [2], the authors show that multicast performance is determined by latency, bandwidth and file
size for a certain scale. We manage to hide these overheads by prefetching and by symmetrically
distributing a given file over a set of storage nodes.

While N-1 read bandwidth is low for AMFES, the N-I read throughput is equal to the /-7
read. This is explained by the fact that bandwidth is lowered by the multicast operation, while
the reading throughput is determined by the local read issued after the multicast finishes.

Figure 6 shows metadata performance for the two file systems. We notice that MemFS
achieves linear scalability for both open and create, while only AMFS open scales linearly. Non-
linear scalability for AMFS create is explained as follows: AMFES distributes file metadata over
all servers based on a hash function of the file name; according to [2], this distribution is not
uniform. AMFS open performs much better than its MemFS counterpart because all queries are
local. For MemFS, if N storage nodes are available, for opening a file there is a 1/N probablity
that the operation will be local. MemFS open outperforms MemFS create due to Memcached
behaviour: get is faster than the conjunction of ser and append.
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Table 1: MTC Envelope Scale 64, File Size IMB, in MB/s

AMFS | MemFS AMFS | MemFS
IPoIB IPoIB 1GbE 1GbE
Write Bw 16934 27403 16934 4928
1-1 Read Bw 24351 24351
1-1 Read Bw 29686 4850
(remote) 6400 3385
N-1 Read Bw 1216 16053 950 1232
Create 25073 22166 20424 21817
Open 221175 61097 168471 40198
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Figure 6: Metadata Operations Throughput

In Table 1 we present MTC Envelope metrics for both AMFS and MemFS at a scale of 64
nodes, using a file size of IMB. For this test we also used the commodity 1GbE network in our
cluster. We explicitly show here results for AMFS remote /-1 read performance. We chose to
show this to cover the scenario when an application task reads more than one input file. In such a
case, AMFS cannot guarantee locality for the subsequent files. As a consequence, the bandwidth
achieved at a scale of 64 compute nodes is degraded by a factor of approximately 4 when the
file system runs on top of IPoIB. For the 1GbE case, the performance decreases with a factor of
approximately 7. In the worst-case scenario of losing data locality for a subset of the file reads,
MemFS outperforms AMFS by a factor of 4.63 when running over IPoIB. Moreover, in such a
case, even with a much slower network, MemFS is faster than AMFS by a factor of 1.4. The N-1/
read performs better on 1GbE for MemFS compared to AMFS.

Table 1 also shows that metadata throughput is also determined by the network characteris-
tics for both AMFS and MemFS. However, the decrease in performance is less visible than for
bandwidth. This can be explained by the fact that metadata performance is mostly influenced by
network latency rather than network bandwidth.

4.2. Application Benchmarks & Multicore Scalability

AMEFS Shell has been designed such that it schedules one task per compute node. Since our
evaluation was executed in a multicore cluster and on multicore EC2 virtual machines, running
one task per compute node would under-utilise the available resources. To fully use the avail-
able compute resources, we have modified AMFS Shell such that it can schedule multiple jobs
at a time on a given node. This multicore-aware scheduler preserves the data-locality scheme
employed by AMFS when running tasks that store data in the AMFS file system. When using
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Table 2: Application Description

Application Input Size | Runtime Data | File Size
Montage 6 X 6 49 GB 50 GB 1-4.4MB
Montage 12 x 12 | 20 GB 250 GB 1-4.4MB
Montage 16 x 16 | 34 GB 450 GB 1-4.4MB
BLAST 57 GB 200 GB 10-120MB
BLAST (EC2) 57 GB 200 GB 5-60MB

MemFS as the storage backend, the multicore-aware scheduler simply submits multiple jobs at a
time, without taking data-locality into account.

Using this multicore-aware version of the AMFES Shell scheduler, we measure application
performance for MemFS compared to AMFS, while also assessing each systems’ scaling be-
haviour. By scaling up, or vertically, we analyze the system behaviour on a fixed number of
nodes, while gradually increasing the number of compute cores used for task processing. Con-
versely, by scaling out, or horizontally, we analyze the system behaviour while gradually in-
creasing the number of compute nodes.

The applications we use are the well-known Montage [1] and BLAST [5] workflows. Mon-
tage is an astronomy MTC application that, given a set of input images of a galaxy, builds a
mosaic. BLAST is a bioinformatics application that searches for specific nucleotide sequences
in a given database.

According to [37, 38], the two applications feature different resource utilization. Montage
exhibits low memory and CPU utilization, but high I/O. In contrast, BLAST shows high CPU
utilization anbut only medium memory and I/O usage.

Figures 1a and 1b depict workflow structure and dataflow patterns, for Montage and BLAST
respectively. Analyzing the Montage workflow graph, one can notice that the mDiffFit task
takes as input two files generated by distinct mProjectPP jobs. Unless the two mProjectPP jobs
were executed on the same node, when scheduling mDiffFit, AMFS Shell cannot guarantee data
locality for reading both files, which leads to a performance degradation for the second read. The
same logic applies to the blastall BLAST task which reads two input files. One could argue that,
by using AMEFS collective operations, all needed files could be made available in advance to all
compute nodes. However, at least in the case of Montage, this is not feasible since the output of
mProjectPP is in the order of tens of GB and could easily saturate each node’s main memory. In
the case of BLAST, it is achievable to have the query files available on all nodes, since their total
size is small. Then, AMFS Shell could schedule blastall jobs locally to each database fragment
to achieve data locality, and thus both file reads will achieve similar performance.

The MemFS design guarantees equal performance for any file read operation, independent
of actual task placement. Due to the file striping, better performance can be achieved by using
the aggregate bandwidth of all nodes storing requested stripes, belonging to one or more files
needed by a task. In the experiments we describe next, we show that for the Montage workflow,
this assumption holds, and mDiffFit performance is superior for MemFS compared to AMFS.

Table 2 shows the application use cases that we used for the evaluation. First, we chose to
run a 6 X 6 Montage mosaic centered on the M17 galaxy. It features 2488 input files that sum
up to 4.9GB of data. The volume of data generated during runtime is approximately SOGB. The
other two Montage use cases we used for benchmarking are 12 X 12 and 16 X 16 mosaics also
centered on the M17 galaxy. Their input sizes are 20 and 34GB and they generate at runtime
approximately 250 and 450GB, respectively.

For the BLAST application, our benchmarking scenario follows the same pattern as presented
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Figure 7: Vertical Scalability Evaluation

in [38]. However, we use the largest database available online, the NCBI nt database (57GB size)
which is split offline into several fragments by using the fastasplit program. These fragments are
copied at runtime into the MTC file system (either AMFS or MemFS) and formatdb is applied
to each fragment. When running on DAS4 we generated 512 database fragments since we have
only 512 compute cores available. Thus, there are 512 formatdb tasks. Then, a total number of
8192 blastall queries are run against the database fragments. The results are aggregated using 16
merge jobs. The data volume generated at runtime accounts for approximately 200GB. However,
when running on EC2 on 32 c3.8xlarge virtual machines, there are 1024 virtual cores available.
Hence, we split the NCBI nt database into 1024 fragments. These generate 1024 formatdb tasks
and 16384 blastall tasks. Even if for this use case the number of tasks is doubled, running
BLAST on the EC2 cloud still generates approximately 200GB of data, as on DAS4. This is
because the database we query against is the same, however, only the fragments are half the size,
but twice as many. Thus, the results between the two different runs are comparable as they are
equal in data size.

4.2.1. DAS4 Results

The experimental setup is as follows. We use the AMFS Shell scheduler on top of either
AMFS or MemFS. In conjunction with MemFS, the AMFS Shell scheduler cannot perform
locality-aware scheduling, thus all tasks are submitted in a uniform manner to all compute nodes.

Figure 7a shows the vertical scalability of the two file systems for the Montage 6 workflow.
The results were determined on 64 nodes, using gradually 1, 2, 4, and 8 compute cores each.
MemFS shows good scalability up to 512 cores, while AMFS only up to 256 compute cores.

Figure 8a depicts the horizontal scalability comparison of the two file systems with Mon-
tage 6. We scaled out the systems from 8 to 64 compute nodes. Because the vertical scalability
results (Figure 7a) showed that AMFS could not scale up to 8 cores per node in the 64 node sce-
nario, in the horizontal scalability graph we decided to show both the 8 core scenario, together
with the 4 core scenario which achieves best efficiency on 64 nodes. For all configurations, when
benchmarking MemFS we used 8 cores per node.

The results show that while both file systems achieve good horizontal scalability, MemFS
leverages better performance. Superior performance of MemFS follows from the MTC Envelope
results: Figure 4b shows that for all metrics, MemFS achieves higher bandwidth than AMFS.
The results of Figure 4b are relevant in this case because Montage operates with files with sizes
in the order of megabytes.

13



Montage 6 Horizontal Scalability MemFS Montage 12 Horizontal Scalability BLAST nt Horizontal Scalability

700 400 3500

mmBackground mBackground = blastall - formatdb
0 = mDiffFit 350 B AR 3000
- mProjectPP 0 W mProjectPP 2500
400 250 2000
_ = L1500
8300 o 200 2
o 2 £ 1000
500
o = g = = 1 \ [ | m N
-— -
0 5 B B R B IR R
Do NS D MO D b S D, h S W LR\ W B e
‘ﬁe&e’%@? \S«(e;{(%/&? &9&5@& &%«a,«s N ® o o
e AR et AN ’ 128 256 512 “ id B
® Gl 93 N
Number of Nodes © Number of Cores Number of Cores
(a) Scaling out from 8 to 64 Nodes. (b) Scaling out from 8 to 64 Nodes. (c) Scaling out from 8 to 64 Nodes.

Figure 8: Horizontal Scalability Evaluation

Table 3: AMFS Memory Distribution for Montage 6

Number of Nodes Scheduler Node Other Nodes
8 19 GB 9.5GB

16 17 GB 5.5GB

32 16 GB 3GB

64 16 GB 1.8 GB

An interesting observation is that while on 32 and 64 nodes AMFS performs better running
4 tasks per node, the 8 and 16 node setups perform better when running 8 tasks per node. Table
3 offers a better understanding of the AMFS’ data distribution when running Montage. In this
table, by “scheduler node” we denote the node that runs the data aggregation stages of Montage
(mImgTbl, mBgModel, mConcatFit - see Figure 1a). The rest of the nodes run only the parallel
tasks (mProjectPP, mDiftFit, mBackground). Due to its replication scheme, AMFS aggregates
large amounts of data in the “scheduler node”, while the other nodes exhibit a balanced data
distribution.

Using Table 3, we can infer that in the 32 and 64 node case, AMFS cannot scale to 8 cores
per node because it cannot exploit data locality well. The nodes that run only parallel tasks
contain only little data and they are only able to achieve data locality for one file per task. For
the subsequent files of the same task, expensive remote reads (see Table 1) need to be performed
from the “scheduler node” which holds most of the data, transforming this node into a centralized
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14



bottleneck. With fewer nodes, in the 8 and 16 scale scenario, AMFS achieves better performance
with 8 tasks per node rather than 4, simply because the nodes hold more data, and benefit from
higher chances of achieving data locality for more than one file of a given task.

Figure 9 depicts the aggregate memory consumption for the two file systems with Montage 6.
The measurements were taken at the end of each experiment presented in Figure 8a on 8 to 64
nodes. The graph shows the superior memory management of MemFS for all scales. Increased
data usage of AMFS can be explained by the replication-on-read performed by AMFS for im-
proving data locality. For the same reason, when increasing scale, the memory consumption of
AMEFS increases at a higher rate than MemFS, since there is more replication involved. MemFS
exhibits a much less steep curve for aggregate memory usage, which is generated by the over-
head of running Memcached and the FUSE file system process on more servers. For MemFS,
each FUSE process allocates around 200MB for storing various data structures that are used for
optimizing I/O performance.

AMFS’s increased memory utilization caused by its replicate-on-read policy prevented us
from running larger Montage workflows, such as the 12 x 12 Montage mosaic. This workflow
has a 20GB input and, during runtime, it generates approximately 250GB of data. AMFS is
unable to run this workflow because the “scheduler node” crashes when trying to accumulate
large amounts of data that do not fit in its main memory. Figures 7b and 8b show that our system,
MemFS, does not only scale vertically or horizontally, but also while increasing the problem
size, and is able to handle much larger amounts of data.

Figure 8b shows excellent horizontal scalability while scaling out from 16 to 64 nodes. All
8 cores of each compute node have been used to run tasks. In the case of vertical scalability
(Figure 7b), 64 nodes have been used, while the Montage tasks were run on 2, 4 and 8 compute
cores each. An interesting observation is that only the mProjectPP and mBackground parallel
tasks are able to scale, while the mDiffFit tasks show similar performance on 2, 4 and 8 cores
per node. This behaviour can be explained by the number and size of input files of the jobs.
mProjectPP and mBackground read one input file of approximately 2MB and output one file of
4MB and 2MB, respectively. mDiffFit reads two input files of 4MB and outputs one file of 2MB,
thus causing more network traffic and saturating the achievable bandwidth. Hence, the mDiffFit
phase is not able to scale up to 4 and 8 cores because its scalability is limited by the network
bandwidth.

For the BLAST evaluation, Figure 7c shows the vertical scalability of AMFS and MemFS on
64 nodes, while scaling up the number of compute cores used from 1 to 8 each. While AMFS
scales only up to 4 cores per node, MemFS is able to scale up to 8 cores per node. The horizontal
scalability experiments are depicted in Figure 8c. We scale both systems out from 8 to 64 nodes,
while scheduling 8 tasks per node. The experimental results show that both systems scale well
horizontally, although MemFS leads to much faster completion times. This behaviour follows
from AMFS’ inability to scale to 8 cores per node (Figure 7c): while in the 1 and 2 core per
node case, MemFS is only about 18% faster than AMFS, in the 4 and 8 core per node case, the
difference becomes much higher. Hence, when scaling horizontally from 8 to 64 nodes, while
using 8 cores per node (best configuration for both file systems), MemFS shows better resource
efficiency which leads to much faster completion times.

4.2.2. Cloud Results
Benchmarking MemFS and AMFS on our DAS4 cluster on up to 512 compute cores, we have
shown that due to its design of efficiently using the network bandwidth and uniformly distribut-

ing data across nodes, MemFS not only is able to achieve better vertical scalability and faster
15



MemFS Vertical Scaling on 4xC3.8xLarge MemFS Vertical Scaling on 4xC3.8xLarge

180 140

W 16 cores W 16 cores
160 ™ 32 cores 120 W 32 cores
140 64 cores 64 cores
™ 128 cores 100 ™ 128 cores
120
— 100 _ 80
O O
g e £ o0
= =
60
40
40
g I 0 l | - =
0 0
mProjectPP mDiffFit mBackground mProjectPP mDiffFit mBackground
Task Task
(a) 1 FUSE Mountpoint (b) 1 FUSE Mountpoint per Process

Figure 10: MemFS Vertical Scalability While Running Montage 6 on 4 c3.8xlarge

completion times, but also run larger problem sizes. In this section, we study MemFS’ applica-
bility on the Amazon EC2 cloud and check if similar results could be achieved. Because MemFS
largely depends on the network characteristics, we have chosen to run on ¢3.8xlarge instances.
These instances are linked with 10Gb Ethernet adapters and feature 32 virtual compute cores,
which are organized into two NUMA nodes, and 60GB of main memory. Our iperf tests have
shown that the achievable bandwidth between these instances is approximately 1GB/s. Thus, the
networking environment is comparable to our DAS4 cluster, while the nodes have more com-
pute cores and more available DRAM. In this context, it is interesting to study MemFS’ vertical
scalability behaviour with more than 8§ cores per node.

To check whether MemFS scales well vertically in this environment, we ran a Montage 6
workflow on 4 ¢3.8xlarge virtual machines while using 4, 8, 16 and 32 cores on each instance.
Figure 10a shows the outcome of this experiment. The results show that MemFS is not able to
scale beyond 8 cores per node. After analyzing the problem, we concluded that the bottleneck
was not in the MemFS design or implementation, but rather in the FUSE design. The FUSE
kernel module uses for each mountpoint a spinlock which is not able to scale when accessed
from different NUMA nodes.

Hence, we modified the deployment of MemFS to use multiple mountpoints, one per each ap-
plication task. In this way, we have been able to scale beyond 8 cores per node. Figure 10b shows
MemFS vertical scalability with this new deployment strategy - one-mountpoint-per-application-
process. Here, even though the speedup is not perfect, our file system does not slow down the
application runtime as shown in Figure 10a. As we will further show, the speedup is not perfect
because in this setup MemFS saturates the available network bandwidth.

After fixing this scalability issue, we have compared MemFS with AMFS, by running the
same Montage 6 instance. Since the EC2 ¢3.8xLarge instance types have up to 32 compute cores,
we assessed both systems’ ability to scale vertically. Figure 11 depicts the achieved results.
Similar to the DAS4 experiment, MemFS achieves much faster completion times on 4 and 8
compute cores, due to the locality imbalances of AMFS.

Unfortunately, AMFS could not run with more than 8 application processes per compute
node. There are two reasons for this behavior. First, AMFS’ storage imbalance prohibits scaling
properly, even from 4 to 8 compute cores. Second, FUSE is unable to scale to more than 8
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Figure 12: Montage 16 Vertical Scalability on 32 c3.8xlarge

compute cores with only a single mountpoint. While we have fixed this issue in MemFS, for
AMES it is not straightforward to use multiple mountpoints per compute node and modifying
the AMFS source code is beyond the scope of this paper. Since AMFS could only run on 8
compute cores from the total of 32 of the ¢3.8xlarge instance type, we conclude that AMFS is
not well suited for these “fat” nodes and we do not make further comparisons between MemFS
and AMFS.

Further, we assessed MemFS vertical scalability on larger problem sizes and on a higher
number of virtual machines. We ran Montage-16 and BLAST on 32 c3.82xlarge nodes, using
gradually 4, 8, 16 and 32 cores on each virtual machine. Our largest setup uses 1024 virtual
compute cores, twice as many cores as used on the DAS4 cluster. Figures 12a and 13a show
MemFS scalability on 32 machines using up to 1024 cores.

For Montage, the mProjectPP stage is CPU-bound, while mDIiffFit and mBackground are
I/O-bound. For BLAST, formatdb is CPU-bound and blastall is I/O-bound. This is why mPro-
JjectPP and formatdb show better vertical scalability. To investigate the scaling behaviour of the
I/O-bound stages of the workflows, we have monitored the network activity of the EC2 virtual
machines. Figures 12b and 13b show the network usage for Montage and BLAST, respectively.
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Figure 14: Montage 12 Horizontal Scalability on 8-32 c3.8xlarge, 32 Cores Each

The figures show the bandwidth utilisation per node. These experiments show that the I/O-bound
stages from both Montage and BLAST saturate the network bandwidth (of approximately 1GB/s)
when running on 16-32 cores. As a consequence, the vertical scalability of MemFS is bound by
the network bandwidth.

Using 8, 16, and 32 nodes, where all 32 cores of each node were utilized, we evaluated the
horizontal scalability of MemFS. Figures 14a and 15a show MemFS’ scaling behaviour when
running Montage 12 and BLAST, respectively. The results show good horizontal scalability for
our distributed file system when running real-world applications on the EC2 cloud. Moreover,
Figures 14b and 15b confirm the previous results: for the I/O-bound workflow stages, MemFS is
bound by the network bandwidth.

It is important to emphasize that MemFS’ vertical scalability is only limited by network
bandwidth when running real-world MTC applications on a public compute cloud. This shows
that MemFS is able to fully saturate premium networks (InfiniBand, 10Gb Ethernet) bisection
bandwidth and its applicability is not limited to tightly-coupled compute clusters.

To further explain and analyze this behaviour we have designed a microbenchmark derived
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Figure 15: BLAST Horizontal Scalability on 8-32 c3.8xlarge, 32 Cores Each

from the MTC Envelope [34]. This microbenchmark measures MemFS’ achieved bandwidth
when using increasing numbers of compute cores per node to run application processes. For this
experiment we have used iozone to read/write files using block sizes of 4KB, the same block
sizes used by Montage and BLAST when doing I/O. This experiment is I/O bound, and does not
utilize as much CPU or memory, as opposed to Montage or BLAST. Figure 16a shows the re-
sults achieved when running this benchmark on 8 c¢3.8xLarge instance types. We have measured
both the system bandwidth and the application bandwidth. The former measures the MemFS
total bandwidth, which is composed by the application I/O and the memcached I/O. The latter is
just the application /O bandwidth. 1t is straightforward to conclude why the application band-
width is approximately half the system bandwidth: the application generated I/O is replicated
in the memcached network traffic since all the data that is written/read by an application is also
read/written by memcached.

Since this microbenchmark is only doing I/O, the network bandwidth is saturated already
by 8 compute cores, as opposed to the real-world applications Montage or BLAST that needed
16 or 32 compute cores to saturate the network bandwidth. For this microbenchmark, when
reaching 16 or 32 compute cores, we notice a slight decrease in the achieved bandwidth. This
is a thrashing behaviour of the network driver. To show that this is not only applicable when
running on Amazon EC2, and MemFS is able to saturate the network bandwidth independent
of the platform, we have run an analogous experiment on the DAS4 cluster. These results are
presented in Figure 16b. On 8 DAS4 nodes, the network bandwidth is saturated when running
application processes on 8 cores per node.

4.3. Summary & Discussion

Co-designing in-memory runtime file systems with locality-aware schedulers for running
MTC-applications has proven to achieve better performance than the traditional approach of
using disk-based distributed file system, such as GPFS [2]. Storing data in memory removes
the bottleneck of mechanical disks, and application tasks are directed to nodes that store the
data to be processed to make use of the large local-memory bandwidth. In contrast, we have
proposed a new design of an in-memory runtime file system that is locality-agnostic: MemFS
evenly distributes data across system nodes and fully utilizes the bisection bandwidth of premium
networks such as InfiniBand or 10Gb Ethernet. Our evaluation has shown that our design is
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able to outperform a state-of-the-art locality-centric approach when running both synthetic MTC
workloads and real-world MTC applications. Moreover, MemFS was able to saturate the 10Gb
Ethernet bandwidth of a public cloud while running on 1024 cores.

First, our results have shown that MemFS achieves similar or better performance when run-
ning micro-benchmarks. MemFS outperforms AMFS in the MTC Envelope 1/O performance
metrics with one exception: AMFS achieves better bandwidth for /-1 read for large file sizes
(128MB). Also, even though AMFS metadata throughput is superior to MemFS, we achieve
linear scalability for metadata operations. However, for bandwidth-bound applications that gen-
erate large amounts of data, such as Montage or BLAST, metadata is not a performance-limiting
factor, and MemFS’ superiority in MTC Envelope 1/O metrics guarantees better application per-
formance.

Second, when running the Montage and BLAST workflows, MemFS attains superior run-
ning times for the parallel stages. Moreover, we showed that AMFS’ replication policy leads to
increased memory consumption, prohibiting the use of larger data sets as the node memory gets
exhausted. Furthermore, we showed that even though both file systems exhibit good horizontal
scalability, MemFS achieves superior vertical scalability and hence, better resource utilisation,
being able to scale to 512 compute cores on our DAS4 cluster.

Finally, we have deployed MemFS on a public comercial cloud on up to 1024 compute cores.
Our distributed file system scales well both vertically and horizontally and is able to fully satu-
rate the 10Gb Ethernet bandwidth while running the Montage and BLAST workflows. Hence,
MemFS performance is only bound by network capacity. With current advances in premium net-
work technologies, and their increase in bandwidth, the design we propose eliminates the need
for data-locality techniques.

5. Conclusions and Future Work

We have presented MemFS, a fully-symmetrical, in-memory distributed runtime file system.
Its design is based on uniformly distributing file stripes across the storage nodes belonging to
an application by means of a distributed hash function, purposefully sacrificing data locality for
balancing both network traffic and memory consumption. This way, reading and writing files can
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benefit from full network intersection bandwidth, while data distribution is balanced across the
storage servers.

Our evaluation shows that MemFS is able to scale well for all MTC Envelope metrics. More-
over, MemFS achieves superior performance than the state-of-the-art, locality-based, AMFS file
system for most of the MTC Envelope metrics. MemFS also shows superior performance with
the Montage and BLAST workflows. We have shown that AMFES’ design for data locality pre-
vents it from storing larger data sets, like from the 12 X 12 Montage workflow. In contrast,
MemFS is able to run 12 X 12 Montage on any configuration of nodes for which the sum of the
available memory from all nodes is big enough to store the total data generated at runtime.

Our current evaluation, limited to 64 nodes by the size of our cluster, indicates that MemFS
scales well with increasing numbers of compute and storage nodes as memory pressure lowers
when storage nodes are added. Furthermore, MemFS shows excellent vertical scalability, suc-
cessfully scaling up to 512 compute cores, thus leveraging good resource utilisation. In contrast,
the locality-based approach of AMFS is unable to scale up to 512 compute cores, with both the
Montage and BLAST applications, due to locality-induced storage imbalance.

MemFS’ applicability is not limited to tightly-coupled compute clusters. Our evaluation on a
public commercial cloud shows that MemFS scales well on up to the 1024 virtual compute cores
we have used. Its vertical scalability is only limited by the network bandwidth when running the
I/O bound tasks of real-world applications Montage and BLAST.

With ongoing work, we are exploring ways to further improve MemFS’ performance, for ex-
ample by using RDMA instead of IP-based communication. In addition, we investigate schemes
to dynamically scale out storage nodes for handling growing storage requirements at application
runtime.
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