
P2-SWAN: Real-time Privacy Preserving
Computation for IoT Ecosystems

Marc X. Makkes, Alexandru Uta, Roshan Bharath Das, Vladimir N. Bozdog, Henri Bal
Dept. of Computer Science, Vrije Universiteit Amsterdam, The Netherlands

{m.x.makkes, a.uta, r.bharathdas, n.v.bozdog, h.e.bal}@vu.nl

Abstract—Sensitive personal user-data collected by Internet-
of-Things (IoT) devices is vulnerable to information leaks when
uploaded to third-party cloud computing infrastructures. Even
though data is encrypted before being sent, to perform analyses
on the received data, the computing infrastructure typically
decrypts the data, and then performs computation. Therefore,
during computation, data can be leaked by means of honest-but-
curious system administrators. To overcome this vulnerability,
homomorphic encryption enables ”blind” computation directly
on encrypted data, thus rendering obsolete any data leaks.
However, homomorphic encryption is highly resource demand-
ing, as it performs many compute-intensive operations during
encryption, while also increasing the size of ciphertexts, which
makes it unsuitable for low-powered (mobile) IoT devices. For
similar reasons, performing operations on encrypted data is also
a challenging task, especially when real-time decision-making is
needed. In such scenarios, efficient solutions must be augmented
by placing computation close to the data: at the network edge.

In this paper, we introduce privacy preserving SWAN (P2-
SWAN), a homomorphic-encryption enabled mobile computing
framework. Even though such encryption adds significant com-
putational overhead, our evaluation shows that it is feasible on
low-powered (mobile) devices. The overhead induced on such
devices is minimized due to our carefully crafted implementa-
tion. We show that performing encrypted operations achieves
excellent scalability, thus only modest numbers of computing
servers can handle the load for data generated by millions of
devices. Furthermore, our proposed approach achieves real-time
computation not only for encrypting data on mobile devices, but
also for performing encrypted computation.

I. INTRODUCTION

The field of distributed sensing and monitoring is rapidly
evolving. Recent estimates [1] for the number of Internet
of Things (IoT) [2] devices foresee that by the year 2020
there will be up to 50 billion devices connected to the
Internet. Flexible solutions for processing IoT data include
cloud or fog [3] computing. Such solutions provide interfaces
for storing or performing various real-time analyses for sensor-
generated data. Common examples of such analyses include
traffic monitoring, air-quality measurements, etc. The afore-
mentioned applications do not handle sensitive data, thus the
communication (or even the computation) need not necessarily
be encrypted.

Recently, an abundance of sensors in smartphones (e.g.,
GPS, step-count, sound) or wearable devices (e.g., heart-
rate, accelerometer) have become available to customers for
keeping track of various personal data (e.g., tracking sleep,
physical activity, last known location). The default behavior
of such devices is that the personal user data is uploaded

to (third-party) cloud infrastructures for storage and possibly
for (health) monitoring and advice on how to improve fitness
levels. Irrespective of the placement scheme, either on the
wearable device vendor’s private infrastructure or a third-
party facility, the data generated by such devices is extremely
sensitive and should be only available to the owner and trusted
entities (i.e., the personal doctor).

The downside with either private or public data processing
infrastructures is that data owners need to trust third-party
platforms or administrators. In addition, in typical IoT solu-
tions, such as ThingSpeak [4], encryption is only provided
between IoT devices and the data collector. Whenever data
analysis is performed (i.e., when the user requests advice on
how to train better), the data needs to be decrypted. Such
data storing and processing platforms are susceptible to data
leaks by means of curious administrators who can access the
system and infer knowledge from the private customer data.
Therefore, we argue that encryption alone is not enough for
user privacy: the computation itself needs to be performed on
encrypted data (which only the user or the doctor can later
decrypt).

To solve this problem, and allow computation on encrypted
data, the solution is homomorphic encryption [5]. This blind
computation model, i.e., doing operations on encrypted data
without revealing its contents, is seen as the holy grail [6] for
off-loading operations to possibly untrusted infrastructures, as
nothing can be inferred about what is being computed (upon).
Fully homomorphic encryption [7], [8] is not feasible for
current computing systems [9] as its complexity renders it im-
practical. Gentry et. al. [10] already presented a first approach
at implementing fully homomorphic encryption. Their results
range from 30 seconds to 30 minutes for a single encryption,
while the public key size increases from 70 MB to 2.3 GB.
Such a scheme is clearly impractical even for state-of-the-
art processors, let alone low-powered IoT devices, such as
smartphones or sensor boards.

However, for the IoT domain, when restricting the possible
input space (i.e., to integers) and the applicable operations (i.e.,
to simple arithmetic operators: addition, multiplication, expo-
nentiation), the problem becomes tractable. Such a scheme
can be efficiently implemented using the Paillier cryptosys-
tem [11]. Using our optimized implementation [12] of the
Paillier cryptosystem, in this paper we study the feasibility
of achieving ”blind computation” for IoT-generated data in
real-time decision making scenarios.

Computation on encrypted data has already been proposed
for securing database systems [13], or large-scale stream pro-
cessing systems [14]. Such approaches have been designed for
industrial-scale, power-hungry computing platforms (clouds,
clusters). However, when securing the computation on data
generated by small, low-powered IoT devices, implementing
such a system becomes more challenging.

First, such devices have much less computational capacity
than a fully-fledged server and are battery-powered. Therefore,
the encryption becomes an expensive operation, not only
because it requires additional computation, but also due to its
increased power consumption. Second, there are potentially
many (i.e., millions) such devices, each sending messages at a
possibly high frequency. As doing computation on encrypted
data requires more CPU cycles on the server machines,
implementing an efficient computation engine, that scales to
possibly millions of clients also becomes a difficult challenge.
Third, in IoT it is often important to perform real-time analysis
on sensor data (i.e., patient monitoring, disaster management).
Therefore, not only the encryption performed on sensors needs
to have a fast response time, but also the data analysis. For
this paper, we consider real-time processing to occur at a
greater (or equal) rate than the data generation rate. Therefore,
real-time encryption is achieved when the encryption rate is
greater (or equal) than the sensor reading rate. Conversely,
real-time data analysis is achieved when the processing
system analyzes data at a greater (or equal) throughput than
the incoming data throughput.

Even if efficient computation is achieved, an important com-
ponent of real-time decision-making is minimizing network
delays. Therefore, the data analysis platform should be placed
as close as possible to the data-generating devices, i.e., in
an edge cloud infrastructure. Our proposed solution can be
applied even in setups where connectivity is restricted to only
mobile (4G) networks. By placing computing capacity at the
edge, i.e., on the cell towers, data generated by mobile devices
can be quickly computed upon, as depicted in Figure 1.

To address these challenges, in this paper, we present P2-
SWAN, a framework for performing real-time edge secure
computation in third-party untrusted datacenters, while min-
imizing the impact of the cryptographic system on both the
sensor nodes and the computation engine. Our implemen-
tation is an extension of our Sensing With Android Nodes
(SWAN) [15]–[17] platform.

Our contributions are as follows:
• We show that Paillier homomorphic encryption is feasible

on mobile devices;
• We show that the impact of homomorphic encryption on

the device battery draining is minimal;
• We show that our system achieves real-time computation,

both on mobile devices and edge cloud platforms;
• We show that the performance overhead of the encryption

operation is negligible, while the data processing engine
achieves excellent scalability, even when compared to
large-scale encrypted stream computation platforms, such
as [14];

• We extend SWAN to include homomorphic encryption
and encrypted computation on sensor-generated data.

The remainder of this paper is organized as follows. In
Section II we present and discuss background knowledge and
related work. In Section III we discuss the design of P2-
SWAN, while Section IV presents our use-cases and supported
homomorphic operations. The experimental evaluation of P2-
SWAN is presented and discussed in Section V, while Sec-
tion VI draws the conclusions.

II. BACKGROUND AND RELATED WORK

This section discusses the background knowledge on top of
which P2-SWAN is built. We also present related approaches
to our work.

A. Related Work

CDC	

4G
	E
dg
e	
FO

G/
Cl
ou

d	
La
ye
r	

Se
ns
or
	la
ye
r	

De
cr
yp
5o

n	
la
ye
r	

CDC	

CDC	

CDC	

Fig. 1. A general edge computing scenario. Many mobile devices with sensors
send sensor information over 4G to a cell-tower with a cloud data center
(CDC) or directly to a cloud data center by a wired connection. The cloud data
centers can run on-demand virtual machines to process sensor information.
Once completed, the results are sent to a device that holds the private key.

Off-loading millions of sensors which produce a manifold of
data points per second, requires high performance implemen-
tation of protocols and careful planning on where to process
which part of the application. It is even more challenging
to do this in a privacy preserving way. In the past decade
several researchers have dealt with various security issues in
low-energy ad hoc wireless networks [18], wireless sensor
networks [19], as well as IoT devices [20].

One approach is to securely forward the sensor information
by the networks itself. Wireless sensor networks are networks
in which nodes work cooperatively to pass their data through
the network to specific end-points. Using homomorphic en-
cryption data aggregation is securely possible [21]. In this
scenario, a tree structure is created with one or more data
collection points. Every node in the network aggregated infor-
mation from its children and send to its parents. This model

usually creates an unbalanced processing in the network,
and some nodes process more than others. In addition, the
network size impacts the latency when information arrives at
a collection point, as every low power node collects, processes
and sends new packets. Also, depending on the type of tree
chosen in the network, fat trees may lead to bottlenecks in
the networks. In our approach we allocate one or more virtual
machines to process the data securely, lifting the computation
burden from intermediate nodes, which has a lower impact on
the battery life of all nodes.

Another approach is to store sensor data in a secure
database, i.e., storing the encrypted values of data points,
and run special queries over them to retrieve data. There are
several solutions for storing and querying data securely, such
as StreamForce [22] and Cryptdb [13]. These systems rely
on cryptography to securely outsource data to an untrusted
server or virtual machines running in cloud data centers. As
opposed to StreamForce, Cryptdb allows to perform opera-
tions on single data entries, which are encrypted, using a
homomorphic cryptosystem. These systems are more targeted
at querying, i.e., less frequently changing data, as opposed
to data stream processing. Data stream processing systems,
such as the recently introduced Polystream [14], are designed
for high volume, process and forget type of applications. The
main focus of Polystream is access control to the data streams
while here we focus on performance. Moreover, our model
is different, we assume there is only one destination, i.e., the
node which has the private key. Both Cryptdb and Polystream
use 1024bit keys, which is strongly discouraged by [23]–
[25]. All recommendations aim for at least 2048-bit encryption
lower-bound security.

B. SWAN

We base our work upon SWAN [16], which is a framework
for easily building context-aware applications for Android
smart-phones. SWAN acts as a middleware between applica-
tions and sensors. It focuses on helping application developers
by providing a high-level abstraction for accessing the sensors.
It also eliminates redundancy caused by multiple sensor-based
applications running in parallel by providing a centralized
solution for collecting and storing sensor data locally. We also
provide a flexible solution called SWAN-Fly [17], to send the
sensor data to the cloud of the application developers’ choice.

Multiple applications can interact with SWAN using its
domain specific language called SWAN-song [15]. The ap-
plication registers a SWAN-song expression to SWAN, which
evaluates the expression and sends back the result.

As an example, the following SWAN-song expression gets
the current light intensity:

self@light:lux{MAX,1000ms}

where self is the location of the sensor, light is the sensor
identifier, lux is the value path (sensor property that has to
be read), MAX represents the history reduction mode and
1000ms represents the history window. This expression will

compute the maximum of the values generated by the light
sensor over the last 1000 milliseconds.

The core of SWAN is the expression evaluation service
that is responsible for querying the sensors and evaluating
the registered expressions whenever new sensor readings are
available. It also communicates with the caller applications,
which are notified upon successful evaluation of expressions.

Sensor data is gathered in SWAN by means of Android
services that query various resources, such as hardware sensors
(on-device sensors like GPS, accelerometer, light, battery or
sensors in external devices like heart rate monitor). All sensor
services run in separate processes, so if SWAN crashes for
any reason, the sensor services will remain stable while the
affected components recover. This prevents data from being
lost. The communication between sensor services and the other
components is performed using inter-process communication.

C. Cryptographic Primitives

Security and privacy are often a great concern when dealing
with sensitive data. To protect against snooping adversaries,
encryption facilitates privacy. Many implementations [19],
[26] that do in-network aggregation or dedicated aggregation
nodes assume that all nodes are trusted, even if these are
virtual machines provide by a third party cloud provider. This
is a potential problem, because the sensor data processed
by the in-network aggregation is performed in the clear,
the message is decrypted prior to aggregation. For some
applications, such as open data, this might be acceptable. In
other cases, such as medical sensor data, this is definitely
not acceptable. Symmetric-key encryption, such as AES [27]
provides security, but when using it in-network or dedicated
aggregators need to decrypt, aggregate, and finally encrypt
before sending the information to the end node. Homomorphic
encryption can be used instead of symmetric-key encryption
to overcome these problems.

Homomorphic encryption allows operations on encrypted
data. Such operations are then reflected in the plaintext.
This implies that nodes at the data aggregation layer are
unable to see the data in the clear. Rather, they perform
operations on ciphertexts. Most homomorphic cryptosystems
are non deterministic, i.e., for encryption of a plaintext m
there are many possible ciphertexts. This also means that the
plaintext is shorter than the resulting ciphertext. This property
makes the homomorphic encryption schemes resistant against
dictionary attacks. In this paper we implement the Paillier
homomorphic cryptosystem [11]. The Paillier cryptosystem is
an additive homomorphic system, which allows additions and
multiplications on ciphertexts. The Paillier cryptosystem has
two variants: the main, and the subgroup variant. The notable
difference is that the private key of the subgroup variant is
smaller, which allows for faster decryption. In this paper we
implement the subgroup variant using a smaller decryption key
while having the same security. The subgroup variant works
as follows:

Key Generation: Let N be a RSA modulus N = p·q , where
p and q are large prime integers. Let λ = lcm(p − 1, q − 1)

and choose α such that it divides λ. Let h ∈ Z∗N2 such that
it has maximal order of αN , and g ≡ h

λ
α (mod N2). The

public key is (g,N), and the private key is α
Encryption: To encrypt a message m ∈ Z∗N , we randomly

choose r ∈ Z∗N and compute the ciphertext c ≡ gm+rN

(mod N2).
Decryption: The decryption of c is defined as

L(cα (mod N2)
L(gα (mod N2) (mod N). The L(u) function is defined
as u−1

N and takes input of SN = {u < N2|u ≡ 1 (mod N)}
The Paillier cryptosystem holds the following additive ho-

momorphic properties:

∀m1,m2 ∈ Z and k ∈ N

D(E(m1) · E(m2) (mod N2))
D(E(m2) · gm2 (mod N2))

}
= m1 +m2 (mod N)

D(E(m1)
m2 (mod N2))

D(E(m2)
m1 (mod N2))

}
= m1 ·m2 (mod N)

D(E(M1)
k (mod N2)) = km (mod N)

III. DESIGN

A. Architecture

In this section we describe the security model of our intro-
duced system as well as the threat model. The scenario from
Figure 1 presents our working assumptions and overall system
model. P2-SWAN is composed of three layers (Figure 2) 1)
sensing nodes generate data and forward it to the Cloud/Fog
computation layer; 2) the data processing engine where the
operations are performed on the sensor data; 3) the result is
forwarded to the device with the private key, which can decrypt
the result. Here we assume that the decryption device is a low
power device, such as a smartphone or a sensor node.

The main goal of P2-SWAN is to handle a scenario
where information processing can be securely offloaded to
an untrusted middle layer. Hence, P2-SWAN guarantees the
confidentiality of data that flows from the sensing nodes
to the decryption devices. Although P2-SWAN protects data
confidentiality, it does not ensure the integrity, or computation
completeness of the results returned by the data processing
engine. For example, P2-SWAN does not protect against an
adversary that could compromise the system, which runs the
data processing machine and can modify the cipher texts (by
applying new homomorphic operations). Another example is
a malicious administrator that stops all processes and connec-
tions, effectively halting the data processing. We continue by
describing the threat model and security guarantees addressed
by P2-SWAN under those threat models.

B. Threat: System Compromise

In this threat model, the data processing engine protects
against a curious system administrator or external adversary
with full access to the system. Here, the goal is to have data
confidentiality, but not integrity or availability. The adversary
is assumed to be passive and to want to learn the contents of

confidential data. In addition, the adversary does not perform
any changes to protocols and processing of data. However,
the adversary has full access to the physical machine, software,
memory contents and applications running on the system. This
is also known as the semi-honest model [28]. Here, we assume
that the adversary has full control over the untrusted edge
datacenter system but not over the P2-SWAN devices. This
threat model is increasingly important as the use of public
cloud resources and outsourcing is growing.

C. Approach and Guarantees

P2-SWAN aims to protect data confidentiality a against
semi-honest adversary by processing the data encrypted with
homomorphic encryption. P2-SWAN devices first encrypt sen-
sor data prior to sending it to the data processing engine. Our
approach is to allow the data processing engine to perform
processing on encrypted data as it would on unencrypted
data, by enabling it to compute certain functions, such as
addition and multiplication. For example, one can compute
the arithmetic mean 1

n

∑n
i=1 ai of all n sensor values, in

which the sum, s is processed homomorphically. The produced
value s together with n is sent to a device that holds the
private key. The device then decrypts s and multiplies the
result with 1

n . This result produces the arithmetic mean. The
only information that the data processing engine reveals is the
number of sensor data points, not its contents. In addition, the
data processing engine does not hold private keys, and uses the
public value of N2 to processes data. Hence, this guarantees
data confidentiality.

D. Implementation

1) Mobile Devices - Encryption Manager: P2-SWAN in
the mobile device is an extension of our SWAN framework.
Mobile applications can register expressions to SWAN to
gather various sensor data. The extended SWAN-Song lan-
guage [17] allows the developer to easily create sensor based
expressions that can be used to send the sensor data to the
edge cloud. The sensor data gathered can be raw (e.g., current
sound level) or processed (e.g., average sound level data over a
period of 5 minutes). The evaluation engine is responsible for
processing the sensor data. After processing, it sends the data
to the encryption manager. The encryption manager supports
both AES and Paillier cryptosystems. The AES encryption is
enabled using a standard cypher library. In case of homomor-
phic encryption, we use the Paillier cryptosystem.

To improve the Pailier cryptosystem on mobile devices,
we apply the following two techniques from our earlier work
[12]: pre-computation and simultaneous multi-exponentiation.
Using these techniques we reduce the encryption of mes-
sage m with random number r from gm+rN (mod N2) to
gm(gN)r (mod N2) with gN pre-computed. This transforms
the computation problem from an exponentiation with a large
number of bits, i.e., rN to a multi-exponentiation gm · (gN)r,
with fewer bits. Here we pre-compute a table with 22k entries
holding different pre-computed exponentiations, see Table I.

SWAN API

Evaluation Engine

Sensor
1

Sensor
N

Mobile
App 1

Mobile
App N

Encryption
Manager

Cloud Manager

Mobile
App 2

P2-SWAN

PaillierAES

Phone Untrusted Edge Cloud

Data Processing Manager

App 1 App 2 App N

VM 1 VM 2 VM M

Run Encrypted Operations

Submit Encrypted Operations

Decryption

Fig. 2. P2-SWAN Architecture and Functionality.

TABLE I
A PRE-COMPUTED TABLE OF 2k × 2k . ALL ENTRIES ARE (mod N2)

1 g g2 · · · g2k−1

(gN) g · gN g2 · (gN) · · · g2k−1 · (gN)

(gN)2 g · (gN)2 g2 · (gN)2 · · · g2k−1 · (gN)2

...
...

...
. . .

...

(gN)2
k−1 g · (gN)2

k−1 g2 · (gN)2
k−1 · · · g2k−1 · (gN)2

k−1

To compute the simultaneous multi-exponentiation, we align
both exponents r and m on the least significant bit, and divide
both exponents in respectively d |m|k e and d |r|k e chunks, with
|m| and |r| being the length in bits, and compute the following:
For each chunk we raise the intermediate result to 2k and use
the chunks from both as an index to Table I, and multiply
by that value. In case of the number of bits m being shorter
than r, i.e., there are no chunks left for an index, we use 0
for all k bits. By using the pre-computation we save at most
|m|·|r|

2 · (k− 1) multiplication as opposed to standard modular
exponentiation, i.e., where it deals only with chunks of k = 1.
This method for exponentiation is also called 2k-ary method
[29], which we extended to simultaneous multi-exponentiation.

2) Mobile Devices - Cloud Manager: The encryption
manager sends the data to the cloud manager. The cloud
manager is responsible for sending the encrypted data from the
phone to the cloud data center at the edge of the network (edge
cloud). Apart from the REST support, we use a WebSocket
connection from the phone to the cloud to deal with real-time
sensor data (e.g., accelerometer) with high frequency (100Hz).

3) Edge Cloud - Data Processing Manager: In the (un-
trusted) edge cloud a process called the data processing man-
ager implements the following functionality. First, it receives
encrypted data from the mobile devices and stores it into a
query-able store (i.e. ThingSpeak [4]). Second, it receives re-
quests from applications to perform homomorphic operations
on (parts of) the data (i.e. data that has been received in the

previous N seconds, or the last M received values, etc.). Third,
it spawns off a number of data processing workers which carry
out the requested homomorphic operations. Finally, when the
computation has finished, and the result is received from the
workers, the manager either stores the result, or sends it to
any device that requests it (this could be the device that runs
the application that initiated the homomorphic computation,
or other devices). Here, we could enforce an authentication
mechanism, such that only accepted devices can request
results, but in practice this may not be necessary because for
decrypting results the homomorphic key is needed.

4) Edge Cloud - Data Processing Worker: Depending on
the type of homomorphic computation applied to the data
and on the data volume on which the computation is to be
performed, the data processing manager spawns off a number
of data processing workers. To decide how many worker nodes
are to be spawned we refer the reader to Section V where a
detailed evaluation of the system throughput is presented.

The workers carry out the computation in a distributed
fashion, splitting the input equally among them. Then, each
worker performs the operations on its input data. Depending
on the application type, an intermediate reduction phase may
be needed to combine the result from each worker. The results
are then sent to the manager.

IV. SUPPORTED OPERATIONS & USE-CASES

For our implementation, we use the Paillier [11] cryptosys-
tem. The limitation that this system entails is that it only
permits simple arithmetic operations: additions and multipli-
cations. Although this restricts the generality of our proposed
solution, there are many sensing applications that can be
modeled using these operations. Typically, sensor generated
data is represented by numerical (integer) values.

Therefore, applications can compute sums over ranges of
values, or averages. This could be achieved over large histor-
ical data generated by one or many devices, or in a streaming
fashion, using a time-window. Such time-based analyses could

be used for computing trends in user-specific activities and
then detect abnormalities for health care. For example, if for
the last five minutes, the user heart-rate is elevated, but also the
accelerometer sensor indicates significant movement, it could
be inferred that the user is training. However, if for the last five
minutes the user’s heart-rate is unusually high (or low) without
any indication of physical activity, it could be inferred that a
serious medical emergency is taking place.

An example of smoothing out error is high resolution toxic
emissions sensing with IoT devices. To measure the impact
of emissions in the environment, many sensors have to be
employed to get a high resolution. Such emission measuring
sensors have low accuracy (i.e., %5 accuracy). To smooth out
errors and outliers in the readings, we can apply a Gaussian
kernel over neighboring sensors. Equation 1 shows an example
of a Gaussian smoothing kernel. Using Gaussian convolutions
we can easily generate more accurate locality- based readings,
such as heat maps.

1

17

1 2 1
2 5 2
1 2 1

 (1)

Here ak,l is the value of the Gaussian kernel at the k row
and the l column. The value vi,j represents the value of sensor
value for the coordinate (i, j). Computing a 3 × 3 Gaussian
kernel using a homomorphic cryptosystem is achieved as
follows:

ρi,j ←M ·

(
1∑

k=−1

1∑
l=−1

vi+k,j+l · ak,l

)
=

M ·D

(
1∏

k=−1

1∏
l=−1

E(vi+k,j+l)
ak,l

) (2)

With:
M =

1∑1
k=−1

∑1
j=−1 ak,j

We distribute computation over the parties as follows. The
encryption of E(vi,j) is done by each sensor node. The
computation of Gaussian kernel

∑∑
vi+k,j+lak,l is done

by the data processing manager, which to the equivalent
to
∏∏

(E(vi,j)
aij using homomorphic encryption. Here we

assume that the values of the Gaussian kernel ai,j and the
kernel it self are public knowledge. The result Gaussian kernel
is stored in ρi,j and can be used to generate image or a heat
map.

V. EVALUATION

In this section we present our experimental evaluation for
the P2-SWAN system. We first show how much overhead is
generated by homomorphic encryption on low-power devices.
Our evaluation presents power consumption and performance
overheads of homomorphic encryption. We also evaluate
whether our implementation achieves real-time encryption on
such devices.

On the edge cloud side, we measure how scalable the plat-
form is when running the applications that perform encrypted
operations. We also assess if our proposed solution achieves
real-time response times. For the purpose of this paper, we
evaluate two applications:
• Computing Sums/Averages: The edge cloud receives

encrypted values from a million devices. The computing
infrastructure performs the homomorphic addition on the
encrypted data and sends back the result to the device
that can decrypt the result.

• Gaussian Smoothing Kernel: The edge cloud receives
encrypted values from a million devices. The computing
infrastructure performs the homomorphic Gaussian Ker-
nel convolution on the encrypted data and sends back the
result to the device that can decrypt the result.

For all applications and benchmarks we use a modulus
|N | = 2048 bits, and private key of |α| = 320 bits. Hence,
performance of the decryption is significantly higher than the
encryption, since the decryption is in the subgroup variant,
i.e., 2048 bits as opposed to the decryption 320 bits.

 0

 5

 10

 15

 20

 25

0 5 50 500 5000

C
P

U
 L

o
a
d
 (

%
)

Encryption Delay (ms)

CPU Load

(a) CPU Load for different encryption delays.

 0

 5

 10

 15

 20

 25

 30

0 5 50 500 5000

B
a
tt
e
ry

 L
if
e
 (

h
)

Encryption Delay (ms)

Battery Drain

(b) Battery drain for different encryption delays.

Fig. 3. CPU Load and Battery Life for increasingly larger encryption delay
on Nexus 5. 0 stands for continuous encryption.

A. Mobile Platform

We evaluate the mobile platform with the following 5
devices:
• LG Nexus 5 with 2.26 GHz quad-core Qualcomm Krait

400 ARMv7 cortex A9 32bit, 2 GB LPDDR3-1600 RAM
running Android version 6.0.1

TABLE II
HOMOMORPHIC ENCRYPTION (2048 BIT) PERFORMANCE ON NEXUS 5 WHEN RUNNING CONTINUOUSLY FOR 5 MINUTES.

#Threads Encryption Time
(ms)

Throughput
(encryptions/sec)

Average Power
(mW)

Total Energy
(mWh)

CPU Load
(%)

1 42.71 22.7 2881.89 240.15 24.56
2 55.02 31.14 2998.77 249.89 33.55
3 69.09 37.5 3002.74 250.22 40.42
4 75.11 46.68 4043.63 336.91 53.33

• Raspberry Pi 1 model B (RPi 1), 700 MHz BCM 2835
ARMv7 cortex A9 32bit, 256 MB LPDDR2 400MHz
RAM running Linux 3.6.11

• Raspberry Pi 2 model B (RPi 2), 900 MHZ quad core
BCM2836 ARMv7 cortex A7 32bit, 1 GB of LPDDR
RAM running Linux 4.4.34.

• Raspberry Pi 3 model B (RPi 3), 1.2 GHz quad core
BCM2837 ARMv8 cortex A53 64-bit, 1 GB 900 MHz
LPDDR2 RAM running Linux 4.4.34 (32-bit mode).

• Scaleway1 C1 (SC 1), 1.333 GHz quad core Armada
370/XP ARMv7 cortex A9 32bit, 2 GB unknown RAM
running Linux 3.16.0.

The Nexus 5 is connected to a Wi-Fi router for sending
encrypted data to the edge cluster. We keep the device in
airplane mode and screen off while running our experiments.
We also uninstall or disable other applications running in the
phone. The energy consumption and the CPU load is measured
using Trepn Profiler [30] tool. The other devices have a wired
connection. The devices are currently not considered high-end
mobile devices, but rather low to mid range devices.

B. Untrusted Edge Platform

To emulate the untrusted edge computing infrastructure we
have used our local DAS-5 [31] cluster2. DAS-5 consists of 68
nodes equipped with dual 8-core Intel E5-2630v3 CPUs and
64GB memory. The nodes are interconnected by two networks:
an 1Gbps Ethernet, and an 54 Gbps FDR InfiniBand. For all
our experiments we have used the latter.

C. Mobile Phone Experiments: Encryption Performance

In this section we present our results for running homo-
morphic encryption on the low-power devices. On the Nexus
5 phone, we measured not only the encryption performance,
but also the energy consumption. On the other devices, we
only measured the encryption performance and conducted a
real-time capability study.

Table II shows the performance measurement on the Nexus
5 device. We run the experiment using 1,2,3 and 4 threads,
while the sensor data is continuously sampled for encryption.
We note that the encryption time is only 42 milliseconds when
running 1 thread. In comparison, the Polystream [14] (whose
source code is not available for implementation comparison)
reports 70 milliseconds for homomorphic encryption on cloud
virtual machines. This shows that our implementation achieves
better performance even when run on a low-power device.

1https://www.scaleway.com
2http://www.cs.vu.nl/das5/

 0

 50

 100

 150

 200

RPi 1 RPi 2 RPi 3 SC 1 Nexus 5

R
e
a
l-
T

im
e
 D

e
la

y
 L

im
it
 (

m
s
)

Device

1 Thread
2 Threads
3 Threads
4 Threads

Fig. 4. Real-time delay limit for various low-power devices.

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

Number of Threads

Speedup
Perfect

(a) Computing Averages Speedup

 0

 0.5

 1

 1.5

 2

 2.5

 3

1 2 4 8 16

M
e
g
a
-O

P
S

/s
e
c
o
n
d

Number of Threads

Mega-OPS/sec

(b) Computing Averages Throughput

Fig. 5. Vertical Scalability for Computing Averages over 1 Million Encrypted
Entries.

After increasing the number of threads, the encryption time
increases due to contention. However, the throughput is more
than 2 times higher when running 4 threads compared to
1 thread. The throughput for 1 thread is 22.7 encryption
operations in one second. It is important to notice the im-
plication: any sensor data with a frequency lower than 22

Hz can be processed in real time using 1 thread. We show
that the normalized (utilization with respect to the maximum
CPU frequency) CPU load percentage scales up linearly. We
also measure the average power consumption: when running
with maximum CPU utilization (4 cores) and maximum data
transfer to the edge cloud, the battery drain is approximately
2 hours.

P2-SWAN in the phone can do local aggregations (e.g.,
average, maximum, minimum etc.) on the sensor data over a
time window. When the time window increases, the frequency
of encryption and data transfer to the edge cloud decreases.
For example, if a mobile application sends the average sound
sensor value over a period 10 seconds, the evaluation engine in
P2-SWAN will keep evaluating the average measurement for a
time window of 10 seconds. Then, at each 10 second interval,
it sends the result to the encryption manager. The manager
encrypts data every 10 seconds and sends it to the edge cloud.
Every output data after homomorphic encryption is of the size
421 bytes. By increasing the time window, we minimize the
data transfer cost and the CPU load (for encryption), therefore
decreasing the energy consumption. Figure 3 shows the CPU
load and the battery drain at various encryption frequencies.
We notice that using a time window of 5 seconds leads to 26
hours of battery life and a low CPU load of 2%.

Figure 4 shows our real-time evaluation study. We have
run our implementation of homomorphic encryption on 5 low-
power devices: RPi 1, RPi 2, RPi 3, Scaleway SC 1, and
Nexus 5. All devices except the RPi 1 have 4 cores, thus, they
can encrypt data in parallel on up to 4 threads. Based on the
encryption throughput achieved, we computed the minimum
delay at which the devices can poll sensors, encrypt their data
and still achieve real-time encryption.

We notice that for RPi 1, if the sensor data is sampled less
often than 220 ms we can achieve real-time encryption. For the
RPi 2 (with 1 thread), the real-time delay is also slightly large:
approximately 150 ms. For all other devices (irrespective of the
numbers of threads used), the delay for which we can achieve
real-time is lower than 100 ms. Furthermore, for all devices,
when running with 3-4 threads for performing encryption, real-
time is achieved for delays lower than 50 ms.

This result ensures that our implementation achieves real-
time encryption for low-power devices. Usually, IoT devices
do not poll sensors continuously. They operate in the fol-
lowing way: (1) poll sensors; (2) send data; (3) sleep for a
predetermined amount of time to save battery. Our results
show that if the sleeping time is lower than 50-100 ms, real-
time encryption is achieved. Conversely, even if the sleeping
time is smaller than this amount of time, P2-SWAN helps in
achieving real-time by performing local aggregations.

D. Untrusted Edge Platform Experiments

In this section we present our results running the two
proposed applications (1) Computing Sums/Averages, and (2)
Gaussian Smoothing Kernel on the untrusted edge platform.
Our envisioned setup is straightforward: we assume that we
need to run the two applications on 1 million encrypted

numbers. This large number of entries could enter the system
in multiple ways: (1) either one million devices send an
encrypted value; (2) one device sent a million entries over
a period of time; or, (3) a combination of (1) and (2).

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

Number of Threads

Speedup
Perfect

(a) Computing Gaussian Kernel Speedup

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

1 2 4 8 16

M
e
g
a
-O

P
S

/s
e
c
o
n
d

Number of Threads

Mega-OPS/sec

(b) Computing Gaussian Kernel Throughput

Fig. 6. Vertical Scalability for Computing Gaussian Kernel over 1 Million
Encrypted Entries.

Therefore, our evaluation assesses the scalability of our data
processing platform when faced with a large-scale load. Also,
we want to check whether the computation over 1 million
entries can be realized in real-time.

Figure 5 shows the scalability behavior (Figure 5a) and
the throughput (Figure 5b) of the Computing Sums/Averages
application when run only on one data processing worker. As
the nodes in our cluster have 16 cores, we run the computation
on 1-2-4-8-16 cores. We notice that when gradually increasing
the number of worker threads, the speedup is not perfect. The
explanation for this behavior is twofold.

First, on one core, the algorithm is running in a sequential
fashion, multiplying 4096-bit numbers while also applying
a modulo operator on the result. When running on larger
numbers of cores, the input is equally split between the
workers, but we also need a reduction phase to combine
the intermediate values computed by each thread. When the
number worker threads increases, the reduction phase takes
more steps.

Second, our nodes are equipped with two CPUs, each
having 8 cores. The two CPUs are organized into two NUMA
nodes. When the data gets copied into the node’s memory,
it gets bound to the memory of only one NUMA node.
When running on more than 8 cores, the second NUMA

node performs slower memory accesses through the QPI, thus
slowing down the computation. Furthermore, the Computing
Sums/Averages algorithm is memory-bound: to compute one
homomorphic addition, two (4096 bit) loads and one store
from/to memory are performed, while there are only two
operations applied: a multiplication and a modulo operation.
Combined with the cross-QPI memory accesses, this leads to
less than perfect scaling behavior

However, the throughput results are encouraging. We notice
that when running at full compute capacity (16 cores per
node), we reach a throughput of approximately 2 million
operations per second. This means that the 1 million entries
are computed upon in approximately 0.5 seconds. Assuming
that the data processing manager receives 1 million messages
per second from sensors, we believe that this result ensures
real-time computation with only one data processing worker.
Therefore, for larger inputs (i.e., given by greater numbers of
encrypting devices) it is straightforward to scale the computa-
tion on higher numbers of processing workers, and maintain
real-time computation.

Figure 6 shows the vertical scalability behavior of the
Gaussian Smoothing Kernel application. In Figure 6a we plot
the speedup achieved when gradually increasing the number
of worker threads, while in Figure 6b we plot the achieved
throughput for the number of Gaussian smoothing operations.
First, we notice that the speedup achieved is better than the one
for Computing Sums/Averages application. The explanation
for this behavior is twofold.

First, it is important to notice that the Gaussian Smoothing
Kernel application does not need a reduction step when
increasing the number of worker threads. This is because the
end result is computed for a per-value basis (i.e., for each
input value, we have an output value), rather than having just
an output value for the entire input. Therefore, there is no need
for communication between the worker threads.

Second, the Gaussian kernel is CPU-bound, rather than
memory-bound. To compute each output value, we perform
9 + 9 memory loads and 1 store. However, the number of
operations applied to get each output value is larger: we
perform 9 exponentiations, 9 multiplications, and for each of
these 1 modulo operation. This leads to 36 operations in total,
making the computation CPU-bound, as its arithmetic intensity
is > 1.

When analyzing the throughput of the Gaussian kernel
operations, we notice that we can only compute at most
120.000 smoothing operations per second on one node. This
is, however, expected, because as we showed earlier, for
each Gaussian smoothing operation, we actually apply 36
arithmetic operations. In conclusion, we cannot reach real-time
computation for the Gaussian Smoothing Kernel application
on only one data processing worker.

The solution for achieving better performance is to scale
out the algorithm by adding multiple data processing workers.
Figure 7 presents our horizontal scaling results: Figure 7a plots
the achieved speedup when gradually increasing the number
of compute nodes; conversely, Figure 7b presents the achieved

throughput. When running these experiments, on each data
processing worker we used the configuration that gave the
most performance in the single-node setup: each worker runs
16 threads. When performing the experiments on 1-2-4-8-16
workers, we scale out to a total of 256 cores.

When analyzing the results, we notice that the achieved
speedup is almost perfect. This is explicable, as the problem
is embarrassingly parallel: each node performs the Gaussian
smoothing operation on its own partition of the data and there
is no need for communication. There is indeed an overlap
between workers, as each of them operates on a sub-matrix and
when computing the Gaussian values for the top and bottom
rows, each node needs values from its adjacent sub-matrices
However, this is solved when the data is initially passed to
the workers: each gets, at the beginning, its corresponding
extra row. The slight degradation in speedup is explained
by the extra-communication time needed in the beginning:
when broadcasting data to increasing numbers of nodes, more
messages need to be passed. This extra added time is, however,
negligible, compared to the number of operations performed.

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

Number of Nodes

Speedup
Perfect

(a) Computing Gaussian Kernel Speedup

 0

 0.5

 1

 1.5

 2

 2.5

 3

1 2 4 8 16

M
e
g
a
-O

P
S

/s
e
c
o
n
d

Number of Nodes

Mega-OPS/sec

(b) Computing Gaussian Kernel Throughput

Fig. 7. Horizontal Scalability for Computing Gaussian Kernel over 1 Million
Encrypted Entries.

Figure 7b shows that, with 16 data processing workers
we can process approximately 2 million Gaussian smoothing
operations per second. Therefore, processing the 1 million
encrypted values input takes approximately 0.5 seconds. As-
suming that the data processing manager receives 1 million
messages per second from sensors, using only 16 workers, we
achieve real-time computation for the Gaussian Smoothing
Kernel application. If the rate at which the data processing

manager receives messages from sensors increases, to main-
tain real-time computation, the number of data processing
workers needs to be scaled proportionally.

VI. CONCLUSION

Typically, while IoT sensors do encrypt their data before
transmission, the computational analysis performed on such
data is made after decryption. Therefore, IoT ecosystems are
prone do data leaks during the data analysis process. To
overcome this vulnerability, in this paper we introduced P2-
SWAN, a homomorphic encryption enabled mobile computing
framework. P2-SWAN is composed of two parts: (1) it runs
on low-power devices that poll sensors (e.g., mobile phones,
ARM-based sensor boards) and (2) untrusted edge (cloud)
platforms. On the low-power devices it performs efficient
encryption of data readings from sensors, while on the edge
platforms it performs encrypted analysis over the sensor-
generated data.

Due to our carefully crafted implementation, the impact
of encryption on low-power devices is minimized while the
achieved performance ensures real-time encryption. At the
edge computing platform level, modest numbers of servers are
able to handle the load generated by millions of sensors, while
achieving real-time data analysis. Therefore, P2-SWAN is able
to ensure secure ”blind” computation on sensor-generated data
while ensuring real-time decision-making.

ACKNOWLEDGMENTS

This work is partially funded by the Dutch public-private
research community COMMIT/. The authors would like to
thank Kees Verstoep for providing excellent support on the
DAS-5 clusters.

REFERENCES

[1] “Cisco Global Cloud Index: Forecast and methodology, 2015-2020
white paper,” http://www.cisco.com/c/dam/en/us/solutions/collateral/
service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf,
2015.

[2] V. Cerf and M. Senges, “Taking the internet to the next physical level,”
Computer, vol. 49, no. 2, pp. 80–86, 2016.

[3] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing. ACM, 2012, pp. 13–16.

[4] “ThingSpeak,” https://thingspeak.com, 2016.
[5] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks and

privacy homomorphisms,” Foundations of secure computation, vol. 4,
no. 11, pp. 169–180, 1978.

[6] V. Vaikuntanathan, “Computing blindfolded: New developments in fully
homomorphic encryption,” in Foundations of Computer Science (FOCS),
2011 IEEE 52nd Annual Symposium on. IEEE, 2011, pp. 5–16.

[7] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. disserta-
tion, Stanford University, 2009.

[8] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic
encryption from (standard) lwe,” SIAM Journal on Computing, vol. 43,
no. 2, pp. 831–871, 2014.

[9] M. Naehrig, K. Lauter, and V. Vaikuntanathan, “Can homomorphic
encryption be practical?” in Proceedings of the 3rd ACM workshop on
Cloud computing security workshop. ACM, 2011, pp. 113–124.

[10] C. Gentry and S. Halevi, “Implementing gentrys fully-homomorphic
encryption scheme,” in Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Springer, 2011, pp.
129–148.

[11] P. Paillier and D. Pointcheval, “Efficient public-key cryptosystems
provably secure against active adversaries,” in International Conference
on the Theory and Application of Cryptology and Information Security.
Springer, 1999, pp. 165–179.

[12] T. P. Jakobsen, M. X. Makkes, and J. D. Nielsen, “Efficient implemen-
tation of the orlandi protocol,” in International Conference on Applied
Cryptography and Network Security. Springer, 2010, pp. 255–272.

[13] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan, “Cryptdb:
protecting confidentiality with encrypted query processing,” in Pro-
ceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles. ACM, 2011, pp. 85–100.

[14] C. Thoma, A. J. Lee, and A. Labrinidis, “Polystream: Cryptographically
enforced access controls for outsourced data stream processing,” in
Proceedings of the 21st ACM on Symposium on Access Control Models
and Technologies. ACM, 2016, pp. 227–238.

[15] N. Palmer, R. Kemp, T. Kielmann, and H. Bal, “Swan-song: A flex-
ible context expression language for smartphones,” in Proceedings of
the Third International Workshop on Sensing Applications on Mobile
Phones. ACM, 2012, p. 12.

[16] R. Kemp, “Programming frameworks for distributed smartphone com-
puting,” Ph.D. dissertation, Vrije Universiteit Amsterdam, 2014.

[17] R. B. Das, A. van Halteren, and H. Bal, “Swan-fly: A flexible cloud-
enabled framework for context-aware applications in smartphones,”
in Sensors to Cloud Architectures Workshop (SCAW-2016), held in
conjunction with HPCA-22, 2016.

[18] L. Buttyán and J.-P. Hubaux, “Report on a working session on security
in wireless ad hoc networks,” ACM SIGMOBILE Mobile Computing and
Communications Review, vol. 7, no. 1, pp. 74–94, 2003.

[19] H. Chan, A. Perrig, and D. Song, “Secure hierarchical in-network
aggregation in sensor networks,” in Proceedings of the 13th ACM
conference on Computer and communications security. ACM, 2006,
pp. 278–287.

[20] H. Suo, J. Wan, C. Zou, and J. Liu, “Security in the internet of things:
a review,” in Computer Science and Electronics Engineering (ICCSEE),
2012 International Conference on, vol. 3. IEEE, 2012, pp. 648–651.

[21] F. Li, B. Luo, and P. Liu, “Secure information aggregation for smart grids
using homomorphic encryption,” in Smart Grid Communications (Smart-
GridComm), 2010 First IEEE International Conference on. IEEE, 2010,
pp. 327–332.

[22] D. T. T. Anh and A. Datta, “Streamforce: outsourcing access control
enforcement for stream data to the clouds,” in Proceedings of the 4th
ACM conference on Data and application security and privacy. ACM,
2014, pp. 13–24.

[23] “Kryptographische verfahren: Empfehlungen und schlüssellangen,”
Technische Richtlinie TR-02102-1, Bundesamt fur Sicherheit in der
Informationstechnik, 2016.

[24] N. Smart, S. Babbage, D. Catalano, C. Cid, B. d. Weger, O. Dunkelman,
and M. Ward, “Ecrypt ii yearly report on algorithms and keysizes (2011-
2012),” European Network of Excellence in Cryptology (ECRYPT II),
2012.

[25] A. K. Lenstra and E. R. Verheul, “Selecting cryptographic key sizes,”
Journal of cryptology, vol. 14, no. 4, pp. 255–293, 2001.

[26] N. Saputro and K. Akkaya, “Performance evaluation of smart grid
data aggregation via homomorphic encryption,” in 2012 IEEE Wireless
Communications and Networking Conference (WCNC). IEEE, 2012,
pp. 2945–2950.

[27] J. Daemen and V. Rijmen, The design of Rijndael: AES-the advanced
encryption standard. Springer Science & Business Media, 2013.

[28] O. Goldreich, Foundations of cryptography: volume 2, basic applica-
tions. Cambridge university press, 2009.

[29] A. Brauer, “On addition chains,” Bulletin of the American Mathematical
Society, vol. 45, no. 10, pp. 736–739, 1939.

[30] “Trepn power profiler,” https://developer.qualcomm.com/software/
trepn-power-profiler, accessed: 2016-12-16.

[31] H. Bal, D. Epema, C. de Laat, R. van Nieuwpoort, J. Romein, F. Seinstra,
C. Snoek, and H. Wijshoff, “A medium-scale distributed system for
computer science research: Infrastructure for the long term,” IEEE
Computer, vol. 49, no. 5, pp. 54–63, 2016.

