
Tiny Autoscalers for Tiny Workloads: Dynamic CPU
Allocation for Serverless Functions

Yuxuan Zhao
LIACS, Leiden University
y.zhao@liacs.leidenuniv.nl

Alexandru Uta
LIACS, Leiden University

a.uta@liacs.leidenuniv.nl

Abstract—In serverless computing, applications are executed
under lightweight virtualization and isolation environments, such
as containers or micro virtual machines. Typically, their memory
allocation is set by the user before deployment. All other
resources, such as CPU, are allocated by the provider statically
and proportionally to memory allocations. This contributes to
either under-utilization or throttling. The former significantly
impacts the provider, while the latter impacts the client. To solve
this problem and accommodate both clients and providers, a
solution is dynamic CPU allocation achieved through autoscaling.
Autoscaling has been investigated for long-running applica-
tions using history-based techniques and prediction. However,
serverless applications are short-running workloads, where such
techniques are not well suited.

In this paper, we investigate tiny autoscalers and how dy-
namic CPU allocation techniques perform for short-running
serverless workloads. We experiment with Kubernetes as the
underlying platform and implement using its vertical pod au-
toscaler several dynamic CPU rightsizing techniques. We com-
pare these techniques using state-of-the-art serverless workloads.
Our experiments show that dynamic CPU allocation for short-
running serverless functions is feasible and can be achieved with
lightweight algorithms that offer good performance.

I. INTRODUCTION

Serverless computing is gaining significant traction, show-
ing large growths in the past years. Many applications are
now running atop serverless offerings, such as machine learn-
ing [1], [2], video processing [3], [4], or analytics [5]–[7].
Serverless applications are composed of many short-lived
functions running on top of virtualization layers such as
containers [8] or lightweight virtual machines [9]. Throughout
the paper, we will refer to both these techniques as serverless
containers. Typically, serverless functions run for at most 15
minutes and as any other workloads exhibit dynamic resource
demands [10], [11]. However, functions are allocated static
amounts of CPU time, usually proportional to their memory
allocation [12]. Static CPU allocation in conjunction with
dynamic workloads opens up interesting avenues for dynamic
autoscaling of serverless containers. Although autoscaling has
been investigated for long-running cloud computing applica-
tions, it has not been considered yet for dynamic CPU alloca-
tion in serverless environments. In this paper we take a step
toward rightsizing the CPU allocation of serverless containers
dynamically, during runtime, through tiny autoscalers.

In serverless computing, providers run up to thousands [9]
of serverless containers on a single server to make use of
the economy of scale to improve resource utilization. Most

of the functions running on these containers are short running
and infrequently invoked [13]. However, providers do keep
containers around after an invocation has finished to improve
cold start latencies for future invocations [9], [14] or predict
when functions will be invoked to pre-warm containers [13].
Resource allocators and schedulers take into account also the
resources allocated to idle containers, even though they might
not be used. Therefore, idle containers that are allocated a
large portion of CPU might contribute to the overall under-
utilization of a server.

While running thousands of functions on a server can
lead to CPU resource utilization issues, memory utilization is
better studied. Users typically select how much memory their
functions should be allocated [12]. While running thousands of
these in a single server sounds prohibitive, techniques such as
REAP already exist for reducing serverless containers memory
footprint [14]. On the other hand, in serverless environments,
CPU allocations are static and performed non-transparently to
the user, proportionally to the amount of memory allocated. It
is thus difficult for a non-technical user to achieve a good CPU
allocation for a given application. Although they are short-
running, serverless functions exhibit dynamic and non-trivial
resource usage, which makes it difficult [15] for their authors
to estimate correctly the amount of resources to be requested
from the cloud provider.

A solution to this problem is given by rightsizing and au-
toscaling algorithms. Cloud-based autoscaling has been exten-
sively studied [16]–[20] and many performance-related studies
have compared autoscaling algorithms [21]–[23]. However,
these are based on long-running cloud applications, where
historical information is abundantly available for making ac-
curate predictions. In our case, with short running functions
that are infrequently invoked, such approaches are not well
suited. First, there is little to no historical data available (i.e.,
in the case of cold starts). It would also be prohibitively
expensive to store fine-grained resource usage information for
all the functions a provider serves. Second, quick reactions to
dynamic resource fluctuations are needed. Third, some of these
algorithms are computationally expensive. Running them for
thousands of serverless containers at once might be prohibitive.

Therefore, in this paper we investigate more lightweight
rightsizing and autoscaling mechanisms, such as simple-
moving average (SMA) and exponential moving average
(EMA), inspired from web-based autoscaling techniques [24].



We call these tiny autoscalers and compare them with recent
methods on container autoscaling [25] based on Holt-Winters
exponential smoothing [26] and long short-term memory
(LSTM) [27]. We show the implications of tiny autoscalers
and how these can be leveraged by practitioners.

Without loss of generality, we implement tiny autoscalers
on top of Kubernetes [28], a container orchestration engine
introduced by Google. Similar techniques could be imple-
mented for lightweight virtual machines [9] as well using
mechanisms such as Linux cgroups. Kubernetes makes use of
an autoscaling recommender which we override to implement
tiny autoscalers. We further compare these with the default
Kubernetes autoscaler which was designed for the Google
Borg Autopilot [29]. Our experiments show that the default
autoscaler is not well suited for short-running serverless
workloads and that significant over- and under-utilization is
exhibited through the default Kubernetes autoscaler when
running serverless workloads.

Toward showing that dynamic CPU allocation for serverless
functions is achievable, our contributions are the following:

1) We design, implement, tune and release as open-source
tiny autoscalers: lightweight autoscaling mechanisms for
serverless workloads. We showcase existing issues in
existing state-of-the-art autoscalers that act as barriers
in applying them for serverless workloads. (Section III).

2) We show empirically that dynamically allocating CPU
for short-lived serverless functions through tiny au-
toscalers is feasible and efficient (Section IV).

3) We discuss the implications of our results for the de-
sign and feasibility of tiny autoscalers for dynamically
allocating CPU for serverless workloads (Section V).

II. SYSTEM MODEL

We make use of the Kubernetes engine to run serverless
containers and applications and dynamically alter their allo-
cated CPU during runtime. We describe how Kubernetes works
and focus on its default container autoscaler, the Vertical Pod
Autoscaler (VPA) Recommender.

The basic architecture of our system is shown in Figure 1.
Our experiment is conducted on a minikube cluster on Ubuntu
20.04. On this minikube cluster, pods are deployed and we
configure only one container running per pod. The pods are
monitored to record their resource usage in a per-second
granularity. The data is collected in a MongoDB database.
Furthermore, we enable VPA to provide a mechanism for
dynamically resizing the containers resource request. The main
aims of VPA are not only reducing the redundant resource
waste requested by containers but also reducing the probability
of an application in the container being throttled or terminated
due to insufficient resources. The VPA primarily consists
of three components: recommender, updater, and admission
controller. In this article, we mainly focus on the recommender
component in VPA. The autoscaling algorithms are integrated
into the recommender component and the performance of
our algorithms is validated by configuring the VPA with
custom autoscaling algorithms. In the following sections, we

Fig. 1. The architecture overview of our system. We deploy a pod containing
the application on minikube. The pod is monitored and the monitoring data
is stored in a MongoDB database. A VPA is attached to the pod for resizing.

TABLE I
DATA MONITORING SOURCE.

Data API
Resource usage client.CustomObjectsApi

Resource requests client.CoreV1Api
VPA recommendations client.ApiClient

demonstrate in detail how we monitor the resource usage in
Kubernetes and show an overview of VPA architecture [30].

A. Resource Monitoring

The resource metrics pipeline [31] of Kubernetes reports
values through the underlying Linux cgroups. These monitor-
ing data are collected by cAdvisor (container advisor) [32],
which is a project open-sourced by Google. cAdvisor can col-
lect the information of all the running containers on a machine,
including CPU usage, memory usage, etc. Then, cAdvisor is
integrated into kubelet [33]. Kubelet is an agent running on
each node in the cluster. Thus, the metrics server [34] gets
the resource metrics from kubelet and integrates the resource
metrics into an API-server, such as the metrics API [35].

CPU and memory usage of containers are monitored
through the kubernetes.client.CustomObjectsApi in the Ku-
bernetes python client. Resource requests of pods and
containers are read via kubernetes.client.CoreV1Api. Re-
sources recommended by VPA are obtained from kuber-
netes.client.ApiClient. Table I lists three data types and their
corresponding APIs where we monitor the resource values.
All of the resource values mentioned above are monitored
every second with fine granularity and stored in a MongoDB
database in real-time. The CPU resource is measured in
milliCPU (or millicores), a unit of measure introduced by
Kubernetes. For example, 100m CPU is equivalent to 0.1 CPU.

B. Vertical Pod Autoscaler

The VPA recommender is an essential component in the
VPA. It provides the core resource usages (CPU and memory)
estimation algorithm which recommends appropriate resource
request values for pods in Kubernetes. As a result, the con-
tainers would resize according to the recommended resource
values. Therefore, the quality of the recommendation algo-
rithm largely determines the quality of the container resizing.
An application would be throttled if it exceeds the specified
CPU limit of the container and gets terminated if its memory
exceeds the limited amount of the container.



TABLE II
METHODS CONSIDERED AND COMPARED IN THIS ARTICLE.

Methods Integrated with Kubernetes VPA
VPA recommender Yes (existing)
HW recommender No, emulation

LSTM recommender No, emulation
SMA recommender Yes (our contribution)
EMA recommender Yes (our contribution)

The VPA is mainly composed of recommender, updater, and
admission controller. The recommender watches all the pods in
the Kubernetes cluster and calculates the recommendation val-
ues for each pod. The recommendation algorithm is included
in section III-A. The recommender reads the pod metrics
from Prometheus [36] regularly. The updater is responsible for
updating pods according to pod recommendations. Currently,
the VPA updater only supports evicting old pods before
recreating a new pod with the recommended resources. This
means the service will be disrupted when a pod needs an
update. In-place update [37] was proposed, but it is still under
development. In this paper we turn off the updating mechanism
and only consider the recommendations, thus not disrupting
containers. This is sufficient to showcase the contributions of
this article.

III. AUTOSCALING METHODS

We discuss autoscaling methods and explain how one can
adapt them to the problem of dynamically rightsizing the CPU
allocation of serverless functions. We identify drawbacks for
these techniques and show how we overcome these.

We first introduce the resource estimation algorithm in the
original Kubernetes VPA. The recommendation algorithm cur-
rently used in vertical pod autoscaler is deeply inspired by the
moving window recommender in Google Borg Autopilot [29].
Then we discuss the autoscaling strategy proposed in [25],
which primarily applies Holt-Winters exponential smoothing
(HW) [26] and Long Short-Term Memory (LSTM) [27]
algorithms to predict the future resource demands. Lastly,
we present a resource estimation algorithm largely based
on the ideas in CPU usage prediction models in web-based
system [24] and bring forth new ideas of how to adapt these
algorithms to the problem at hand. We improve the algorithms
to adapt to the scenario of serverless function CPU resizing.

Table II gives a summary of the methods used in this
paper. Besides our newly implemented algorithms, the original
VPA recommendation algorithm is already implemented into
vertical pod autoscaler. As for HW and LSTM autoscaling
strategy proposed in [25], they are not integrated into the
vertical pod autoscaler component by their authors and it is
outside the scope of this paper to implement them in the
Kubernetes VPA. We instead use emulation to compare these
algorithms with tiny autoscalers.

A. Kubernetes VPA Recommender

The recommender of the VPA mainly borrows the ideas
of the moving window recommender in Google Borg Au-
topilot [29]. The VPA recommender creates a decaying his-
togram object to store the CPU usage for every container.

The recommender acquires the resource usage of all pods
from Prometheus [36] regularly and writes the resource us-
age of containers into a maintained corresponding decaying
histogram. The decaying histogram is composed of multiple
buckets, which are used to store the weight of resource usage.
The size of buckets in a decaying histogram grows exponen-
tially with a ratio of 1.05. The first bucket stores the weights
of resource usage in the range of [0, firstBucketSize). Since
the bucket size grows exponentially, the size of the nth bucket
follows firstBucketSize ∗ ration−1. The weight of every
resource usage is stored in the bucket where the resource usage
falls between the bucket boundaries. As time goes by, usage
weight decreases as well. If the default HalfLife is set to
24h, the weight of the past 24 hours before will be halved.

In terms of recommendation, the VPA recommender uses
three values: target value, lower bound value, and upper bound
value. They are the starting values (left boundaries) of the
bucket where the total weight of that bucket and the former
buckets arrives at 0.9 ∗ totalWeight, 0.5 ∗ totalWeight, and
0.95 ∗ totalWeight for the first time, correspondingly. Fur-
thermore, VPA recommender applies a confidence multiplier
to lower bound value and upper bound value. The VPA evicts
the pod as soon as its request value is beyond the range of
upper bound and lower bound, then creates a pod with the
current recommended value as its request.
Kubernetes VPA recommender drawback: The Kubernetes
default VPA recommender, based on Google Borg Autopi-
lot [29], is not sensitive to short, sudden changes in workloads,
and is more suited for longer running workloads. Serverless
workloads are short running with sudden bursts in CPU usage.

B. HW and LSTM Recommender

Wang et al. proposed an autoscaling mechanism [25] which
applies Holt-Winters exponential smoothing (HW) [26] and
Long Short-Term Memory (LSTM) [27] algorithms to increase
the CPU utilization of Kubernetes containers. Their autoscaler
takes target value, lower bound value, and upper bound value
from HW and LSTM models as input and supplies 120
millicores as the error buffer. Their algorithm will give a
new recommended value when the current CPU request is
out of the range of bounds. They preset two values to avoid
unnecessary rescaling. One is the rescaling cool-down value,
the other is the minimum change check value. This means it
will rescale only after a cool-down time has passed since the
last rescaling. In addition, the difference between the value
of the current request and a new request must be more than
minimum change check value. HW and LSTM recommenders
are implemented in Python with Statsmodels and Keras. For
HW recommender, the prediction model refits when each
new observation is collected. For LSTM recommender, the
prediction model retrains every season (several observations
compose a season). At least two season data are needed
to generate the future CPU usage prediction from HW and
LSTM recommenders because these two models need to be
initialized at the beginning. That explains why there is a fixed



Fig. 2. The basic framework of load prediction models [24]. The actual
CPU usage are processed by two types of load trackers and get CPU usage
representations, then make prediction for future CPU demands according to
the representations.

recommendation value in cold starts for both HW and LSTM
recommenders (See Section IV-D).

Emulation. Unfortunately, this autoscaling mechanism is
not integrated into the VPA. Thus in this article the perfor-
mance of HW and LSTM is not benchmarked in real-time but
rather in emulation. We initially run the experiments without
any VPA and collect the CPU usage data. Then we train the
HW and LSTM models using a subset of the initial data. The
season length is set to one minute and as training data we use
two seasons. Using any shorter seasons will result in very poor
performance. The input data are fed into these two models
to refit or retrain the models and get the predicted values of
future CPU usage. The final output of these models is the
recommended value for the future CPU demands.

The major downside of the HW and LSTM recommenders
is that they need significant amount of training data to
perform well. In short running serverless workloads, this is
either difficult to get since the functions are very short, or
very expensive to store since providers are running extremely
large numbers of different functions. Keeping utilization data
for all of them will be prohibitive. Hence, The HW and
LSTM recommenders are expensive for serverless containers.

LSTM and HW drawback: ML-based recommenders need
significant amount of data for training, which might not be
available in serverless scenarios. Moreover, ML-based recom-
menders are computationally expensive.

C. Tiny Autoscalers: SMA-and EMA-based

Andreolini et al. [24] proposed load prediction models for
CPU usage in web-based systems. Since these models are
lightweight to apply in terms of computational complexity and
do not need much training data, in this paper we investigate if
they are suitable for short-lived serverless workloads as tiny
autoscalers. We innovate these algorithms while inheriting the
ideas behind their prediction models. We adapt the models and
implement them in the Kubernetes VPA.

Andreolini et al. demonstrate in their paper [24] that it is
infeasible to predict future load well using the raw CPU usage
measures. They design load trackers, two linear functions
to smooth the trend of CPU usage, representing the CPU
load behavior of the system (see Section III-C1). Then, they
make predictions of CPU usage through load representations
processed by load trackers. The basic framework of the load
prediction models is depicted in Figure 2.

1) Load trackers: As Figure 2 shows, the load predic-
tion model has a two-step approach. In the first phase of
the models, we still apply two linear load tracker functions
presented in the original paper [24], which are simple moving
average (SMA) load tracker and exponential moving average
(EMA) load tracker. Given a CPU usage value si measured at
time ti and previously sampled n CPU usage values, they
compose a set Sn (ti) = (si−n, . . . , si). The load tracker
function is defined as LT (Sn (ti)) : Rn+1 → R, where
the Sn (ti) is the input of the load tracker function and it
returns a representation li to represent the set of Sn (ti) at
time ti. Simple moving average (SMA) is the unweighted
average of n + 1 CPU usage values in the set Sn (ti), the
weights assigned to each observation are the same. So the
SMA-based load tracker function at time ti is defined as:

SMA (Sn (ti)) =

∑
i−n≤j≤i

sj

n+1 . The problem of the SMA
load tracker in theory is that it will involve a delay when it
represents the workload trend, especially if the size of Sn (ti)
is large. As opposed to SMA, exponential moving average
(EMA) load tracker function can decrease the delay effect well
in theory. Exponential moving average (EMA) is the weighted
average of n+ 1 CPU usage values in the set Sn (ti) and the
weights of observations are exponentially decreasing. Thus,
the EMA-based load tracker function at time ti is defined as:

EMA (Sn (ti)) =

=


∑

0≤j≤n

sj

n+1 if i ≤ n,
α ∗ si + (1− α) ∗ EMA(Sn (ti−1)) if i > n.

The parameter α is called the smoothing constant. We con-
form with the constant value in the paper [24] and set the
smoothing constant α = 2

n+1 . For the load tracker based on
EMA at time ti, the recent observations contribute more to
the representation li than the older observations due to the
decaying weights.

2) Load predictor: In the second phase of the models,
we adapt and innovate the load prediction in the paper [24]
according to our usage scenarios. The load predictor func-
tion is defined as LP (Lq (ti)) : Rn+1 → R, where
Lq (ti) = (li−q, . . . , li) is a set of q + 1 representations
obtained from load tracker function. LP (Lq (ti)) returns the
predicted future CPU usage value. LP (Lq (ti)) = Max(β ∗
S/EMA (Sn (ti)) , m ∗ (i + k) + a), where m =

li−li−q

q ,
and a = li−q −m ∗ (i− q).
EMA and SMA drawback: While EMA and SMA algorithms
are lightweight and effective in following the resource demand,
we experimentally found that EMA and SMA need to be tuned
for the workloads they target. As a consequence, we adapt
EMA and SMA to work efficiently on serverless workloads.
In Section IV-C we show how our tuned versions perform.

The fundamental idea behind our tuning and modification
for the load predictor is an heuristic which will always try to
slightly over-provision than under-provision, so that the client



TABLE III
SERVERLESS WORKLOADS USED IN OUR EXPERIMENTS.

Name Input Size Runtime
image rotate 10,000 Images 4 minutes

image rotate shorter 1,000 Images 15 seconds
lr training default 5,700MB CSV 10 minutes

video processing 17m 17MB Video 15 seconds
video processing 67m 67MB Video 1.5 minutes

video processing 127m 127MB Video 4 minutes

TABLE IV
METRICS INTERVAL INFLUENCE ON DEFAULT VPA OVER-PROVISIONING.

Metrics Interval Average Slack (millicores)
1 minute 426.23
1 second 328.23

serverless function will not be significantly throttled. Thus,
in our prediction algorithm, we introduced β, a constant to
multiply with the former average of recent CPU usage values.
We then take the maximum between this term and the original
predicted value. This mechanism is a bottoming mechanism so
that the prediction does not drop very rapidly.

Since in the original formula we have the term m =
li−li−q

q
in the prediction, m will be close to 0 when the CPU load
tends to be flat, which will lead to a cliff on the predicted
values. Thus, we introduce a novel bottoming mechanism to
the EMA and SMA algorithms. The adoption of the bottoming
mechanism prevents the predicted resource usage value from
rapid and unexpected decline. Additionally, the linear extrapo-
lation prediction, according to recent representations from load
tracker, ensures the predicted value to rise abruptly when CPU
usage is at peak. SMA-based and EMA-based recommenders
have the advantage of their low computational complexity, so
they are suitable for tiny autoscalers for serverless functions
while keeping a promising prediction result.

In terms of update policy, we follow the design in the
VPA keeping the lower bound and upper bound for a rec-
ommendation value. However, what is different from VPA is
that we revise the calculation methods of lower bound and
upper bound. In VPA, the lower bound and upper bound
are calculated as the starting values of the bucket where its
accumulated weight achieves 50% and 95% of total weight.
In SMA- and EMA-based recommender, the upper bound and
lower bound follow the trend of predicted value and with a
multiplier as in the VPA. Thus, the lower bound and upper
bound will converge to the predicted value as time goes by in
the same as the default VPA. When the request value of the
pod is out of the range of lower bound and upper bound, the
pod will be updated with a new request value that is the same
as the recommended value at that time.

Two parameters are needed in both SMA-based and EMA-
based recommenders, which are the size of the load tracker
and the number of the load trackers. The size of the load
tracker represents how many observations are in a load tracker
to calculate the (un)weighted average. The number of load
trackers indicates how many representations li obtained from
the load tracker function are used to make an extrapolation
prediction. For example, we use EMA5-3 to represent EMA
method with load tracker of size 5 and with 3 load trackers.

Fig. 3. Result of video processing 127m with default VPA (metrics interval 1
minute). On this workload, the default VPA recommendation stays unchanged
and cannot react with changes of the actual CPU usage.

Fig. 4. Result of video processing 127m with default VPA (metrics interval
1 second). The default VPA with metrics interval as 1 second can follow the
trend of the actual CPU usage at the beginning but stays unchanged in the
following warm starts.

IV. EXPERIMENTAL EVALUATION

We investigate empirically what are implications of dy-
namically autoscaling the CPU allocations of serverless con-
tainers. We explain our experimental setup, tune the default
Kubernetes VPA, show our results tuning EMA- and SMA-
based autoscalers. Finally, we show what are the implications
of dynamically rightsizing CPU allocations using 4 different
autoscalers for serverless workloads in both cold and warm
starts. We discuss the practical implications of our results.

A. Experiment Setup

In this paper, we investigate the performance of several
CPU autoscaling mechanisms on serverless workloads. These
CPU autoscaling mechanisms include the default VPA in
Kubernetes, simple moving average (SMA) and exponential
moving average (EMA) which are inspired from web-based
load prediction models [24], and container autoscaling meth-
ods [25] based on Holt-Winters exponential smoothing (HW)
and long short-term memory (LSTM). The performance of
these mechanisms are measured by two metrics: average slack
and average insufficient CPU. Slack is the amount of CPU
usage that is over-provisioned, while insufficient CPU usage
refers to the amount of CPU usage that is under-provisioned.
The metrics are defined in detail by Wang et al. [25] and can
be viewed as a simplification of the extensive set of metrics
defined by Ilyushkin et al. [21].

To evaluate these autoscalers we use three workloads from
the vHive [14] archive. By using different input sizes which
shorten or lengthen their running time we reach a total of
six serverless workloads. According to the Microsoft investi-
gation of their own serverless workloads [13], our proposed
workloads are realistic in terms of runtime. Table III shows the
serverless workloads evaluated in this paper and their runtime.



TABLE V
COMPARING AVERAGE SLACK AND AVERAGE INSUFFICIENT CPU OF

EMA5-3 BEFORE AND AFTER OUR TUNING AND ADAPTATION.
Tuning Avg. Slack (millicores) Avg. Insuf. (millicores)

Before tuning 5.16 288.75
After tuning 134.81 66.89

We run all our experiments under Ubuntu 20.04 and
minikube v1.24.0. Our servers are an on-prem machine with
8 cores and 16 GB RAM and i3.metal AWS EC2 virtual
machine, which has 72 cores and 512 GB RAM.

B. Tuning the Kubernetes Default VPA Autoscaler

The default Kubernetes VPA Autoscaler makes recommen-
dations at fixed-time intervals. The default interval is 1 minute.
This is insufficient for serverless workloads which could be
much shorter than 1 minute as shown by Shahrad et al. [13].
To improve the default Kubernetes VPA autoscaler we have
tweaked this value to 1 second. We show the difference
between the two time intervals in the following experiment.

To evaluate the performance of the default VPA autoscaler,
we run all the workloads repeatedly. The first run of a
workload emulates a cold start, while the subsequent runs
emulate warm starts of the serverless functions. Figures 3
and 4 plot our results for the video processing workload.
Interpreting these results, one could notice that the VPA with
1 second interval acts faster at the beginning because the
first recommendation from autoscaler with 1 minute metrics
interval only can be caught after 1 minute. Although both of
them cannot follow the trend of CPU usage fluctuations, the
autoscaler with 1 second metrics interval has less slack than
autoscaler with 1 minute metrics interval. Table IV shows
the average slack of default VPA autoscaler with different
metrics intervals.

Conclusion-1: The default Kubernetes VPA cannot follow the
actual CPU usage fluctuations closely. With 1 second metrics
interval it exhibits less slack than for 1 minute metrics interval.
Short-running serverless workloads need different autoscalers
(Figures 3, 4, Table IV).

C. Building Tiny Autoscalers: Tuning EMA and SMA

In Section III we introduced the SMA and EMA methods
for web-based workload CPU usage prediction [24]. We
have found that in their original form they do not perform
well for serverless workloads, exhibiting significant under-
provisioning. Thus, in this paper, we adapt these methods to
serverless workloads as explained in Section III. To show the
under-provisioning behavior more clearly, in this section we
use a different workload, namely the YSCB [38] key-value
store benchmark running on top of the Redis key-value store.
The VPA we implemented monitors the Redis Kubernetes
Pods and adapts their CPU dynamically.

As Figure 5 shows, the prediction of the unaltered original
method can react with the change of CPU usage trend very
fast, not only for increasing CPU but also for decreasing CPU.
However, as the figure shows, this encompasses significant
amounts of insufficient CPU (i.e., under-provisioning). This

Fig. 5. Default ema5-3 dynamic CPU allocation (before tuning). Notice how
the default EMA method consistently allocates insufficient CPU.

Fig. 6. Dynamic CPU allocation using ema5-3 including our tuning defined
in Section III. Notice how the tuned EMA version has a much more balanced
CPU allocation.

results in the application being slowed down. To overcome
this disadvantage, we introduce a bottoming mechanism to
the algorithms. We involve unweighted or weighted average
of recent CPU usage values to prevent the prediction from
rapid decline unexpectedly and unreasonably. As Figure 6
indicates, after our adaptation and tuning, the prediction is
improved when the actual CPU usage decreases suddenly.
Table V compares average slack and average insufficient CPU
of ema5-3 before and after our adaptation.

In this section we present only the results of the ema5-3
method due to space limitations, but the results we have are
consistent over all EMA and SMA methods, e.g., ema10-5,
ema3-2, sma3-2, sma5-3. In the latter experiments presented
in this section we show overall results using all these methods
which perform better than the default Kubernetes VPA and
the ML-based methods of LSTM and HW.

Conclusion-2: The tiny autoscalers can predict the actual
CPU usage closely after our tuning. Our adaptation is able to
leverage much less under-provisioning, offering the application
better overall CPU performance (Figures 5, 6, Table V).

D. Dynamic CPU Allocation for Cold Starts

One very important area of research related to serverless
systems are cold starts. They refer to the first start of a
serverless function on a given server, when the underlying
subsystem is not pre-warmed (e.g., microVMs are not yet
booted, runtimes are not loaded etc.). The first start might refer
to either the first invocation of a function after its creation, or
the first start of a function on a specific server. The behavior
would be similar in both cases.

For scheduling containers in serverless workloads, cold
starts are important because schedulers that make use of
historic information, such as the default Kubernetes VPA,
LSTM or HW discussed earlier in this paper, do not have
any historical information. Even though a function might have



Fig. 7. Cold starts for HW and LSTM compared to ema5-3 when running
image rotate shorter workload. Due to lack of historical information and
training, LSTM and HW cannot allocate sufficient CPU. LSTM and HW
curves overlap.

Fig. 8. Comparing the average slack and insufficient CPU among all the
methods in this paper when running image rotate shorter workload in the
cold start. Due to the training process of LSTM and HW, they do not perform
well in both slack and insufficient CPU as a result of presenting a preset value.

been run previously on a different server, we assume that for
cloud providers keeping fine-grained scheduling and resource
usage information is prohibitive, as providers are likely to
run millions of such functions every hour [13]. Under such
auspices, it is important to know how autoscalers fair for the
first time when scheduling a specific function.

We experimented with all applications and all autoscalers
dynamically allocating CPU for cold application starts. We
apply ML-based autoscalers, LSTM and HW using the same
data on CPU usage as in the ema5-3 run for a more equitable
performance comparison between EMA-based autoscaler and
them. We present the behavior under cold starts for the
image rotate shorter and video processing 17m workloads
in Figures 7 and 9. These figures show that basically the
ML-based autoscalers, LSTM and HW, cannot allocate CPU
dynamically for cold starts. This is because they do not
have any historic information on which the methods could
have been trained. Instead, they simply offer a default static
amount of CPU. The EMA method we tuned in our previous
experiment is able to match the CPU demand accurately.

For all the autoscalers we have implemented for this paper,
we show their average slack and insufficient CPU for the
cold starts of the two workloads, image rotate shorter and
video processing 17m, in Figures 8 and 10 correspondingly.
ML-based autoscalers present high average insufficient CPU
on two workloads (especially in Figure 10). It is immediately
clear that the ML-based autoscalers cannot follow the CPU
demand of the workloads during cold starts due to insufficient
historical information. Similarly for the default Kubernetes
VPA autoscaler, either significantly under-provisioning or
over-provisioning for certain applications, presenting high
average slack or average insufficient CPU in Figures 8 and 10.
Tiny autoscalers achieve extremely low average insufficient
CPU but also relatively low average slack at the same time.

Fig. 9. Cold starts for HW and LSTM compared to ema5-3 when running
video processing 17m workload in the first run. Due to lack of historical
information and training, LSTM and HW cannot allocate sufficient CPU.
LSTM and HW curves overlap

Fig. 10. Comparing the average slack and insufficient CPU among all the
methods in this paper when running video processing 17m workload in the
cold start. Due to the training process of LSTM and HW, they do not perform
well in both slack and insufficient CPU as a result of presenting a preset value.

Conclusion-3: For cold function starts, ML-based autoscaling
algorithms achieve poor performance as they do not have
sufficient data to be trained with. The tiny autoscalers can
follow the CPU resource demand curves more closely, offering
better performance (Figures 7, 8, 9, 10).

E. Dynamic CPU Allocation for Warm Starts

Microsoft shows that in their serverless system [13], many
functions are invoked several times every hour and significant
numbers of functions are actually invoked every few minutes.
In these conditions, autoscalers that keep track of history
have sufficient data to perform well in subsequent functions
runs, or warm starts. In this section we investigate how the
autoscalers perform when functions are invoked repeatedly,
and whether historical information can help in taking better
resource allocation decisions.

We run all the workloads under all autoscalers repeatedly for
a period of tens of minutes. The first run emulates a cold start,
while subsequent runs emulate further warm starts. Using this
method we evaluate how the investigated autoscalers perform
under warm starts and how accurately they can dynamically
allocate CPU to applications.

Figure 11 shows the curves of the performance on the video
processing workload for the EMA-based method, HW, and
LSTM methods. From Figure 11, the curves indicate that the
EMA-based method can follow the trend of CPU usage very
well as opposed to methods based on HW and LSTM. Unlike
HW and LSTM methods, the EMA-based method does not
need data to train the model at the beginning.

We summarize the performance of all the the autoscalers
over all applications for warm starts in Figures 12 and 13.
The former presents the average slack (i.e., over-provisioning)
and the latter presents the average insufficient CPU (i.e.,



Fig. 11. Comparing HW and LSTM with our ema5-3 running on
video processing 17m workload. Notice our method follows the CPU usage
trend more closely than HW and LSTM, offering better performance.

Fig. 12. Average CPU slack for all workloads under all autoscalers. The
applications were run several times to emulate serverless warm starts.

under-provisioning). For all applications, the best performing
autoscalers are the SMA and EMA-based ones that we have
tuned. While the default Kubernetes VPA and LSTM and HW
autoscalers present extreme behavior—in some situation very
high slack and very low insufficient CPU—the EMA and
SMA based autoscalers are able to keep both metrics relatively
low. This is important because it shows conservative behavior
that can help cloud practitioners offer good performance to
clients without greatly over-provisioning. Conversely, the
amount of application throttles is also kept to a minimum.

Conclusion-4: For warm function starts, tiny autoscalers offer
better performance than ML-based autoscaling, following the
CPU resource usage more closely and offering less average
slack and insufficient CPU usage (Figures 11, 12, 13).

F. Running Thousands of Tiny Autoscalers

In practice, to achieve dynamic CPU allocation in serverless
clouds, providers have to attach an autoscaler to every running
function instance. Recent literature [9] shows that providers
can run up to thousands of functions per server. In this
experiment we show what the added CPU utilization overhead
is for running thousands of tiny autoscalers per machine, one
for each function.

To only measure the CPU overhead of the autoscaling
mechanisms, we create Kubernetes containers that simply
sleep after being booted. We then attach to each of these
containers a VPA running the EMA5-3 autoscaler. Since the
containers are only sleeping, the CPU utilization is only caused
by the autoscalers running next to the containers.

Officially, Kubernetes developers have put a limit of 500
VPAs running on a single node. Unfortunately, we could

Fig. 13. Average insufficient CPU for all workloads under all autoscalers.
The applications were run several times to emulate serverless warm starts.

not reach this limit and we could only run reliably up to
250 VPAs. This is not a serverless problem per se, but
rather a Kubernetes limitation which does not affect the
entire field. In future releases of Kubernetes this issue will
be fixed. For this paper, going beyond 250 VPAs, we have
used a polynomial curve fitting technique. Our results are
plotted in Figure 14. Following the CPU utilization curve,
250 VPAs do not use more than 5% CPU. Our extrapolation
shows that going up to 2,000 VPAs will not result in more
than 17.5% CPU usage. This leaves sufficient room for the
applications to run. If providers consider this limit too high,
there are several options to reduce the load: (i) wrapping
autoscalers in cgroups with CPU limits; (ii) use a coarser
grained monitoring interval, or (iii) group multiple containers
(e.g., containers from the same user) under a single autoscaler.

Conclusion-5: It is feasible to run thousands of tiny au-
toscalers, as these fine-grained and lightweight methods do
not use much CPU (Figure 14).

V. SUMMARY: IS DYNAMIC CPU ALLOCATION FEASIBLE
FOR SERVERLESS THROUGH TINY AUTOSCALERS?

Based on the results we show in Section IV, we return
to our main question: is dynamic CPU allocation feasible in
serverless environments? This is opposed to common current
practice where CPU allocation is fixed and proportional to the
memory allocation requested by the client.
1. Are state-of-the-art autoscalers enough for serverless?

Currently, the default Kubernetes VPA can not solve the
problem of recommendations for sudden and short-lived CPU
usage increases very well. The recommendations from the
default VPA usually have significant slack, which results in
resource under-utilization. The default VPA was designed with
different goals, such as longer-running workloads, which it is
able to serve well as shown by previous work. Moreover, the
ML-based autoscalers, such as LSTM and HW need significant
amounts of training data to perform well. Such data might not
be available for serverless workloads or might be prohibitively
expensive to store at such a large scale.
2. What is a good tiny autoscaler for serverless?

For this work we modified the original SMA- and EMA-
based autoscalers to slightly over-provision, but within certain



Fig. 14. The CPU utilization of running many concurrent EMA5-3 VPAs
in Kubernetes. Because Kubernetes cannot run more than 250 VPAs, we
extrapolate the CPU usage up to 2000 instances.

bounds, instead of under-estimating. Insufficient resources will
lead to throttling of the applications. Conversely, offering
many more resources than needed will lead to the under-
utilization of the server operated by the cloud provider.

As our experiments show, the SMA and EMA-based ap-
proaches outperform both the ML-based autoscaling, as well
as the default Kubernetes VPA. We achieve this result using
two techniques. First, we adopt a bottoming mechanism for
the future CPU demands prediction to prevent it from a
rapid decrease. Second, we apply the same converging lower
bound and upper bound as the default VPA. The lightweight
SMA and EMA methods are more appropriate for serverless
functions not only in cold invokes but also in warm runs.
3. Is dynamic CPU allocation feasible for serverless?

Currently, serverless providers offer clients only statically
allocated CPU for running serverless functions. In this work
we have investigated whether it is feasible to dynamically
allocate CPU to serverless workloads, using tiny autoscalers.
Based on our results, we are confident that simple and
lightweight techniques, such as SMA and EMA are accurate
in predicting and following the CPU utilization of serverless
functions. Moreover, practitioners can run thousands of these
tiny autoscalers without much CPU overhead. Implementing
these in practice might offer serverless platforms the ability
to better allocate resources to their clients by reducing overall
server under-utilization and by reducing the throttling created
by statically allocating CPU.

VI. RELATED WORK

We discuss related work in four categories: prediction of
workloads, autoscaling in the cloud, autoscaling containers,
and vertical autoscaling virtual machines.

Predicting Workload Trends. Recent work [25] on CPU
usage prediction for autoscaling is based on Holt-Winters
exponential smoothing (HW) and Long Short-Term Memory
(LSTM) methods. These two methods exhibit expensive com-
putational complexity. We have analyzed them in detail in
Section III. The lightweight prediction methods we modify
in this article are based on the two-step CPU usage prediction
model [24]. Similar to these techniques, Casolari and An-
dreolini [39] proposed another trend-aware regression model
using linear extrapolation. Regression-based methods [40] also
exist in this space, as well as techniques based on autoregres-
sion, introduced by Roy et al. [41].

Cloud Autoscaling. A complete taxonomy of the field of
cloud autoscaling are developed by Chen at al. [42]. Going in

depth, several projects specifically investigate the performance
study of the state-of-art autoscalers. Versluis et al. [23],
Ilyushkin et al. [43] and Jindal et al. [44] demonstrate in-
depth comparisons for autoscalers on workflows and introduce
frameworks and tools to assess the performance of autoscalers.
Efficient techniques [45] for achieving autoscaling include task
allocation strategies, e.g., as the one introduced by Zhong and
Buyya [46] or by Thurgood and Lennon [47], who offered
a software solution to autoscale entire Kubernetes clusters.
Recently, also serverless clouds have been the subject of
autoscaling via reinforcement learning [48]. However, this
only autoscales horizontally the number of container running
hosts, not the containers themselves.

Autoscaling Containers. Rattihalli et al. [49] designed
RUBAS, an autoscaling mechanism to estimate the CPU and
memory resources of containers through the sum of the median
of observations and the absolute deviation of observations [50],
[51]. Autopilot [29] introduced by Google is a complete
autoscaling system, it not only takes into account vertical
autoscaling but also horizontal autoscaling on both CPU and
memory usage. The current vertical pod autoscaling recom-
mender we compare against in this article is directly inspired
by the moving window recommenders in Autopilot. Nguyen et
al. [52] investigated the horizontal pod autoscaling and offered
optimization strategies for horizontal pod autoscaling.

VM Vertical Autoscaling. Similar techniques have long
been applied to virtual machines in the cloud. These can be
vertically either through hotplugging (for CPU or memory) or
through CPU throttling (e.g., using rate limiting mechanisms).
For example, several articles consider vertical VM autoscal-
ing [53]–[56].

As opposed to all these, in this article we assess the feasi-
bility of tiny autoscalers for short-lived serverless functions.
Our results show that for these types of workloads, a special
kind of autoscaler is needed, namely a lightweight autoscaler
that is able to react quickly to changes in demand.

VII. CONCLUSIONS

In this paper, we have addressed the problem of dynamically
allocating CPU for serverless functions through tiny
autoscalers. In modern serverless clouds, users request
serverless functions of a certain memory size allocation.
Subsequently, their CPU is allocated by the cloud provider
proportionally to the memory allocation. It is therefore non-
trivial for the user to achieve a satisfactory CPU and memory
allocation. To solve this problem and scale CPU and memory
independently, the literature offers various autoscaling
algorithms. However, most of them are either heavy-weight
or depend on expensive historical information, which may
not be available for the short-running and infrequently
invoked serverless functions. We therefore investigate five
different algorithms for the dynamic rightsizing of serverless
functions’ CPU during runtime. We implement several
of these in Kubernetes and experiment with state-of-the-
art serverless workloads. We show that dynamic CPU
rightsizing is possible for serverless functions and several



algorithms achieve good performance for both cold invokes
as well as warm runs. Tiny autoscalers can be found on github:
https://github.com/ZhaoNeil/On-Demand-Resizing.git

ACKNOWLEDGMENTS

The work in this article was in part supported by The Dutch
National Science Foundation NWO Veni grant VI.202.195.

REFERENCES

[1] Carreira et al., “Cirrus: A serverless framework for end-to-end ml
workflows,” in SoCC, 2019.

[2] Jiang et al., “Towards demystifying serverless machine learning train-
ing,” in SIGMOD, 2021.

[3] Jonas et al., “Occupy the cloud: Distributed computing for the 99%,” in
SoCC, 2017.

[4] Fouladi et al., “Encoding, fast and slow: Low-latency video processing
using thousands of tiny threads,” in NSDI, 2017.

[5] Pu et al., “Shuffling, fast and slow: Scalable analytics on serverless
infrastructure,” in NSDI, 2019.

[6] L. Toader, A. Uta, A. Musaafir, and A. Iosup, “Graphless: Toward
serverless graph processing,” in 2019 18th International Symposium on
Parallel and Distributed Computing (ISPDC). IEEE, 2019.

[7] Müller et al., “Lambada: Interactive data analytics on cold data using
serverless cloud infrastructure,” in SIGMOD, 2020.

[8] Randazzo and Tinnirello, “Kata containers: An emerging architecture
for enabling mec services in fast and secure way,” in 2019 Sixth
International Conference on Internet of Things: Systems, Management
and Security (IOTSMS), 2019.

[9] Agache et al., “Firecracker: Lightweight virtualization for serverless
applications,” in USENIX NSDI, 2020.

[10] Gunasekaran et al., “Fifer: Tackling resource underutilization in the
serverless era,” in Proceedings of the 21st International Middleware
Conference, 2020.

[11] Bhasi et al., “Kraken: Adaptive container provisioning for deploying
dynamic dags in serverless platforms,” in SoCC, 2021.

[12] AWS Lambda, “Aws lambda documentation,” Available at https://docs.
aws.amazon.com/lambda/latest/dg/configuration-function-common.html
(2021/12/10).

[13] Shahrad et al., “Serverless in the wild: Characterizing and optimizing
the serverless workload at a large cloud provider,” in USENIX ATC,
2020.

[14] Ustiugov et al., “Benchmarking, analysis, and optimization of serverless
function snapshots,” in ASPLOS, 2021.

[15] Eismann et al., “Sizeless: Predicting the optimal size of serverless
functions,” arXiv preprint arXiv:2010.15162, 2020.

[16] Ali-Eldin et al., “An adaptive hybrid elasticity controller for cloud
infrastructures,” in Network Operations and Management Symposium
(NOMS), 2012 IEEE, 2012.

[17] Iqbal et al., “Adaptive resource provisioning for read intensive multi-tier
applications in the cloud,” FGCS, vol. 27, no. 6, 2011.

[18] Urgaonkar et al., “Agile dynamic provisioning of multi-tier internet
applications,” ACM Transactions on Autonomous and Adaptive Systems
(TAAS), vol. 3, no. 1, 2008.

[19] Fernandez et al., “Autoscaling web applications in heterogeneous cloud
infrastructures,” in IC2E, 2014.

[20] Chieu et al., “Dynamic scaling of web applications in a virtualized cloud
computing environment,” in E-Business Engineering, 2009. ICEBE’09.
IEEE International Conference on, 2009.

[21] Ilyushkin et al., “An experimental performance evaluation of autoscaling
policies for complex workflows,” in Proceedings of the 8th ACM/SPEC
on International Conference on Performance Engineering, 2017.

[22] Bauer et al., “Chamulteon: Coordinated auto-scaling of micro-services,”
in ICDCS, 2019.

[23] Versluis et al., “A trace-based performance study of autoscaling work-
loads of workflows in datacenters,” in CCGrid, 2018.

[24] Andreolini and Casolari, “Load prediction models in web-based sys-
tems,” in Proceedings of the 1st International Conference on Perfor-
mance Evaluation Methodolgies and Tools, 2006.

[25] Wang et al., “Predicting cpu usage for proactive autoscaling,” in Pro-
ceedings of the 1st Workshop on Machine Learning and Systems, 2021.

[26] Pan, Holt–Winters Exponential Smoothing. American Cancer Society,
2011.

[27] Hochreiter and Schmidhuber, “Long short-term memory,” Neural Com-
put., vol. 9, no. 8, 1997.

[28] Burns et al., “Borg, omega, and kubernetes,” ACM Queue, vol. 14, 2016.
[29] Rzadca et al., “Autopilot: Workload autoscaling at google scale,” in

EuroSys, 2020.
[30] T. Sebastian, “Vertical pod autoscaler,” Available at https://banzaicloud.

com/blog/k8s-vertical-pod-autoscaler/ (2021/12/10).
[31] 2021 The Kubernetes Authors, “Kubernetes monitoring architecture,”

Available at https://github.com/kubernetes/design-proposals-archive/
blob/main/instrumentation/monitoring architecture.md (2021/12/10).

[32] Google, “cadvisor,” Available at https://github.com/google/cadvisor
(2021/12/10).

[33] 2021 The Kubernetes Authors, “Kubelet,” Available at https:
//kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
(2021/12/10).

[34] 2021 The Kubernetes Authorss, “Kubernetes metrics server,” Available
at https://github.com/kubernetes-sigs/metrics-server (2021/12/10).

[35] 2021 The Kubernetes Authors, “Metrics-api,” Available at https://github.
com/kubernetes/metrics (2021/12/10).

[36] 2021 The Linux Foundation, “What is prometheus?” Available at https:
//prometheus.io/docs/introduction/overview/ (2021/12/10).

[37] V. Kulkarni, “In-place update of pod resources,” Available at https://
github.com/kubernetes/enhancements/issues/1287 (2021/12/10).

[38] Cooper et al., “Benchmarking cloud serving systems with ycsb.” As-
sociation for Computing Machinery, 2010.

[39] Casolari et al., “Runtime prediction models for web-based system re-
sources,” in 2008 IEEE International Symposium on Modeling, Analysis
and Simulation of Computers and Telecommunication Systems, 2008.

[40] Davis et al., “Regression-based utilization prediction algorithms: An
empirical investigation,” in Proceedings of the 2013 Conference of the
Center for Advanced Studies on Collaborative Research, 2013.

[41] Roy et al., “Efficient autoscaling in the cloud using predictive models
for workload forecasting,” in CLOUD, 2011.

[42] Chen et al., “A survey and taxonomy of self-aware and self-adaptive
cloud autoscaling systems,” ACM Comput. Surv., vol. 51, no. 3, 2018.

[43] Ilyushkin et al., “An experimental performance evaluation of autoscalers
for complex workflows,” ACM Trans. Model. Perform. Eval. Comput.
Syst., vol. 3, no. 2, 2018.

[44] Jindal et al., “Autoscaling performance measurement tool,” in Compan-
ion of the 2018 ACM/SPEC International Conference on Performance
Engineering, 2018.

[45] Ghanbari et al., “Optimal autoscaling in a iaas cloud,” in Proceedings
of the 9th International Conference on Autonomic Computing, 2012.

[46] Zhong and Buyya, “A cost-efficient container orchestration strategy in
kubernetes-based cloud computing infrastructures with heterogeneous
resources,” ACM Trans. Internet Technol., vol. 20, no. 2, 2020.

[47] Thurgood and Lennon, “Cloud computing with kubernetes cluster elastic
scaling,” in Proceedings of the 3rd International Conference on Future
Networks and Distributed Systems, 2019.

[48] Schuler et al., “Ai-based resource allocation: Reinforcement learning for
adaptive auto-scaling in serverless environments,” in 2021 IEEE/ACM
CCGrid. IEEE, 2021.

[49] Rattihalli et al., “Exploring potential for non-disruptive vertical auto
scaling and resource estimation in kubernetes,” in CLOUD, 2019.

[50] ——, “Two stage cluster for resource optimization with apache mesos,”
CoRR, vol. abs/1905.09166, 2019.

[51] Rattihalli, “Exploring potential for resource request right-sizing via es-
timation and container migration in apache mesos,” in 2018 IEEE/ACM
International Conference on Utility and Cloud Computing Companion
(UCC Companion), 2018.

[52] Nguyen et al., “Horizontal pod autoscaling in kubernetes for elastic
container orchestration,” Sensors, vol. 20, no. 16, 2020.

[53] Hummaida et al., “Adaptation in cloud resource configuration: A sur-
vey,” J. Cloud Comput., vol. 5, no. 1, 2016.

[54] Sedaghat et al., “A virtual machine re-packing approach to the horizontal
vs. vertical elasticity trade-off for cloud autoscaling,” in Proceedings of
the 2013 ACM Cloud and Autonomic Computing Conference, 2013.

[55] Lu et al., “Application-driven dynamic vertical scaling of virtual ma-
chines in resource pools,” in 2014 IEEE Network Operations and
Management Symposium (NOMS). IEEE, 2014, pp. 1–9.

[56] Svärd et al., “Hecatonchire: Towards multi-host virtual machines by
server disaggregation,” in European Conference on Parallel Processing.
Springer, 2014, pp. 519–529.

https://github.com/ZhaoNeil/On-Demand-Resizing.git
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html
https://banzaicloud.com/blog/k8s-vertical-pod-autoscaler/
https://banzaicloud.com/blog/k8s-vertical-pod-autoscaler/
https://github.com/kubernetes/design-proposals-archive/blob/main/instrumentation/monitoring_architecture.md
https://github.com/kubernetes/design-proposals-archive/blob/main/instrumentation/monitoring_architecture.md
https://github.com/google/cadvisor
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://github.com/kubernetes-sigs/metrics-server
https://github.com/kubernetes/metrics
https://github.com/kubernetes/metrics
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://github.com/kubernetes/enhancements/issues/1287
https://github.com/kubernetes/enhancements/issues/1287

	Introduction
	System Model
	Resource Monitoring
	Vertical Pod Autoscaler

	Autoscaling Methods
	Kubernetes VPA Recommender
	HW and LSTM Recommender
	Tiny Autoscalers: SMA-and EMA-based
	Load trackers
	Load predictor


	Experimental Evaluation
	Experiment Setup
	Tuning the Kubernetes Default VPA Autoscaler
	Building Tiny Autoscalers: Tuning EMA and SMA
	Dynamic CPU Allocation for Cold Starts
	Dynamic CPU Allocation for Warm Starts
	Running Thousands of Tiny Autoscalers

	Summary: Is Dynamic CPU Allocation Feasible for Serverless through Tiny Autoscalers?
	Related Work
	Conclusions
	References

